Longitudinal Patent Analysis for Nanoscale Science and Engineering: Country, Institution and Technology Field View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2003-08

AUTHORS

Zan Huang, Hsinchun Chen, Alan Yip, Gavin Ng, Fei Guo, Zhi-Kai Chen, Mihail C. Roco

ABSTRACT

Nanoscale science and engineering (NSE) and related areas have seen rapid growth in recent years. The speed and scope of development in the field have made it essential for researchers to be informed on the progress across different laboratories, companies, industries and countries. In this project, we experimented with several analysis and visualization techniques on NSE-related United States patent documents to support various knowledge tasks. This paper presents results on the basic analysis of nanotechnology patents between 1976 and 2002, content map analysis and citation network analysis. The data have been obtained on individual countries, institutions and technology fields. The top 10 countries with the largest number of nanotechnology patents are the United States, Japan, France, the United Kingdom, Taiwan, Korea, the Netherlands, Switzerland, Italy and Australia. The fastest growth in the last 5 years has been in chemical and pharmaceutical fields, followed by semiconductor devices. The results demonstrate potential of information-based discovery and visualization technologies to capture knowledge regarding nanotechnology performance, transfer of knowledge and trends of development through analyzing the patent documents. More... »

PAGES

333-363

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1023/a:1025556800994

DOI

http://dx.doi.org/10.1023/a:1025556800994

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1044551537


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Arizona", 
          "id": "https://www.grid.ac/institutes/grid.134563.6", 
          "name": [
            "Artificial Intelligence Lab, Department of Management Information Systems, Eller College of Business and Public Administration, The University of Arizona, 85721, Tucson, AZ, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Huang", 
        "givenName": "Zan", 
        "id": "sg:person.010126250665.75", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010126250665.75"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Arizona", 
          "id": "https://www.grid.ac/institutes/grid.134563.6", 
          "name": [
            "Artificial Intelligence Lab, Department of Management Information Systems, Eller College of Business and Public Administration, The University of Arizona, 85721, Tucson, AZ, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chen", 
        "givenName": "Hsinchun", 
        "id": "sg:person.01320367405.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01320367405.07"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Arizona", 
          "id": "https://www.grid.ac/institutes/grid.134563.6", 
          "name": [
            "Artificial Intelligence Lab, Department of Management Information Systems, Eller College of Business and Public Administration, The University of Arizona, 85721, Tucson, AZ, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yip", 
        "givenName": "Alan", 
        "id": "sg:person.012060607115.89", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012060607115.89"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Arizona", 
          "id": "https://www.grid.ac/institutes/grid.134563.6", 
          "name": [
            "Artificial Intelligence Lab, Department of Management Information Systems, Eller College of Business and Public Administration, The University of Arizona, 85721, Tucson, AZ, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ng", 
        "givenName": "Gavin", 
        "id": "sg:person.011030227157.27", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011030227157.27"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Arizona", 
          "id": "https://www.grid.ac/institutes/grid.134563.6", 
          "name": [
            "Artificial Intelligence Lab, Department of Management Information Systems, Eller College of Business and Public Administration, The University of Arizona, 85721, Tucson, AZ, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Guo", 
        "givenName": "Fei", 
        "id": "sg:person.016441452115.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016441452115.23"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Arizona", 
          "id": "https://www.grid.ac/institutes/grid.134563.6", 
          "name": [
            "Artificial Intelligence Lab, Department of Management Information Systems, Eller College of Business and Public Administration, The University of Arizona, 85721, Tucson, AZ, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chen", 
        "givenName": "Zhi-Kai", 
        "id": "sg:person.011331341715.45", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011331341715.45"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Science Foundation", 
          "id": "https://www.grid.ac/institutes/grid.431093.c", 
          "name": [
            "National Science Foundation, 4201 Wilson Blvd., 22230, Arlington, VA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Roco", 
        "givenName": "Mihail C.", 
        "id": "sg:person.0653064203.62", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0653064203.62"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/s0172-2190(97)00033-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002866778"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/(sici)1097-4571(19980515)49:7<582::aid-asi2>3.0.co;2-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007998578"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/1097-024x(200009)30:11<1203::aid-spe338>3.0.co;2-n", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011815659"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02016800", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014346654", 
          "https://doi.org/10.1007/bf02016800"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02016800", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014346654", 
          "https://doi.org/10.1007/bf02016800"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jvci.1996.0008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024102032"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1013248621015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037696350", 
          "https://doi.org/10.1023/a:1013248621015"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/(sici)1097-4571(1999)50:9<799::aid-asi9>3.0.co;2-g", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043803644"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/07421222.1999.11518256", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046296068"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/2.910895", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061106359"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.122.3159.108", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062466125"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2003-08", 
    "datePublishedReg": "2003-08-01", 
    "description": "Nanoscale science and engineering (NSE) and related areas have seen rapid growth in recent years. The speed and scope of development in the field have made it essential for researchers to be informed on the progress across different laboratories, companies, industries and countries. In this project, we experimented with several analysis and visualization techniques on NSE-related United States patent documents to support various knowledge tasks. This paper presents results on the basic analysis of nanotechnology patents between 1976 and 2002, content map analysis and citation network analysis. The data have been obtained on individual countries, institutions and technology fields. The top 10 countries with the largest number of nanotechnology patents are the United States, Japan, France, the United Kingdom, Taiwan, Korea, the Netherlands, Switzerland, Italy and Australia. The fastest growth in the last 5 years has been in chemical and pharmaceutical fields, followed by semiconductor devices. The results demonstrate potential of information-based discovery and visualization technologies to capture knowledge regarding nanotechnology performance, transfer of knowledge and trends of development through analyzing the patent documents.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1023/a:1025556800994", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1028317", 
        "issn": [
          "1388-0764", 
          "1572-896X"
        ], 
        "name": "Journal of Nanoparticle Research", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3-4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "5"
      }
    ], 
    "name": "Longitudinal Patent Analysis for Nanoscale Science and Engineering: Country, Institution and Technology Field", 
    "pagination": "333-363", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "d436d593c807746cdf750480c4c01348c84fd3f28c7f3f841d549b08ab37f72b"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1023/a:1025556800994"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1044551537"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1023/a:1025556800994", 
      "https://app.dimensions.ai/details/publication/pub.1044551537"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T15:50", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8664_00000507.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1023%2FA%3A1025556800994"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1023/a:1025556800994'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1023/a:1025556800994'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1023/a:1025556800994'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1023/a:1025556800994'


 

This table displays all metadata directly associated to this object as RDF triples.

138 TRIPLES      21 PREDICATES      37 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1023/a:1025556800994 schema:about anzsrc-for:03
2 anzsrc-for:0306
3 schema:author N45ecbe0aafd449a396b7c34b1b481f66
4 schema:citation sg:pub.10.1007/bf02016800
5 sg:pub.10.1023/a:1013248621015
6 https://doi.org/10.1002/(sici)1097-4571(19980515)49:7<582::aid-asi2>3.0.co;2-x
7 https://doi.org/10.1002/(sici)1097-4571(1999)50:9<799::aid-asi9>3.0.co;2-g
8 https://doi.org/10.1002/1097-024x(200009)30:11<1203::aid-spe338>3.0.co;2-n
9 https://doi.org/10.1006/jvci.1996.0008
10 https://doi.org/10.1016/s0172-2190(97)00033-1
11 https://doi.org/10.1080/07421222.1999.11518256
12 https://doi.org/10.1109/2.910895
13 https://doi.org/10.1126/science.122.3159.108
14 schema:datePublished 2003-08
15 schema:datePublishedReg 2003-08-01
16 schema:description Nanoscale science and engineering (NSE) and related areas have seen rapid growth in recent years. The speed and scope of development in the field have made it essential for researchers to be informed on the progress across different laboratories, companies, industries and countries. In this project, we experimented with several analysis and visualization techniques on NSE-related United States patent documents to support various knowledge tasks. This paper presents results on the basic analysis of nanotechnology patents between 1976 and 2002, content map analysis and citation network analysis. The data have been obtained on individual countries, institutions and technology fields. The top 10 countries with the largest number of nanotechnology patents are the United States, Japan, France, the United Kingdom, Taiwan, Korea, the Netherlands, Switzerland, Italy and Australia. The fastest growth in the last 5 years has been in chemical and pharmaceutical fields, followed by semiconductor devices. The results demonstrate potential of information-based discovery and visualization technologies to capture knowledge regarding nanotechnology performance, transfer of knowledge and trends of development through analyzing the patent documents.
17 schema:genre research_article
18 schema:inLanguage en
19 schema:isAccessibleForFree false
20 schema:isPartOf Nb68993d668de4265a16c82401fd8d5f8
21 Ndd3fa16636434442a69ba6b09d8a5f1f
22 sg:journal.1028317
23 schema:name Longitudinal Patent Analysis for Nanoscale Science and Engineering: Country, Institution and Technology Field
24 schema:pagination 333-363
25 schema:productId N79e77ba3ae7f46e1a7ff43309d7c4e1d
26 Nead81fc2fe194dd1af399711d5c1a824
27 Nf4ece6839cd64fd8b968e180d809dbb8
28 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044551537
29 https://doi.org/10.1023/a:1025556800994
30 schema:sdDatePublished 2019-04-10T15:50
31 schema:sdLicense https://scigraph.springernature.com/explorer/license/
32 schema:sdPublisher N03e9bf759b4748d7be4cdec8d9f07d46
33 schema:url http://link.springer.com/10.1023%2FA%3A1025556800994
34 sgo:license sg:explorer/license/
35 sgo:sdDataset articles
36 rdf:type schema:ScholarlyArticle
37 N03e9bf759b4748d7be4cdec8d9f07d46 schema:name Springer Nature - SN SciGraph project
38 rdf:type schema:Organization
39 N2eaffff1a4df4c84863d1afe6f2fc34e rdf:first sg:person.016441452115.23
40 rdf:rest Nf1122299989041f5bb23cb668e6e3518
41 N45ecbe0aafd449a396b7c34b1b481f66 rdf:first sg:person.010126250665.75
42 rdf:rest Naf7f57575d014daa8f491943afd92cfe
43 N5dc37f32fe5c442bb72a0d7f9d0665a2 rdf:first sg:person.012060607115.89
44 rdf:rest Nf961ab382b5d4c0889a020372560493c
45 N771cdef927ca43b398929fded0677841 rdf:first sg:person.0653064203.62
46 rdf:rest rdf:nil
47 N79e77ba3ae7f46e1a7ff43309d7c4e1d schema:name dimensions_id
48 schema:value pub.1044551537
49 rdf:type schema:PropertyValue
50 Naf7f57575d014daa8f491943afd92cfe rdf:first sg:person.01320367405.07
51 rdf:rest N5dc37f32fe5c442bb72a0d7f9d0665a2
52 Nb68993d668de4265a16c82401fd8d5f8 schema:issueNumber 3-4
53 rdf:type schema:PublicationIssue
54 Ndd3fa16636434442a69ba6b09d8a5f1f schema:volumeNumber 5
55 rdf:type schema:PublicationVolume
56 Nead81fc2fe194dd1af399711d5c1a824 schema:name doi
57 schema:value 10.1023/a:1025556800994
58 rdf:type schema:PropertyValue
59 Nf1122299989041f5bb23cb668e6e3518 rdf:first sg:person.011331341715.45
60 rdf:rest N771cdef927ca43b398929fded0677841
61 Nf4ece6839cd64fd8b968e180d809dbb8 schema:name readcube_id
62 schema:value d436d593c807746cdf750480c4c01348c84fd3f28c7f3f841d549b08ab37f72b
63 rdf:type schema:PropertyValue
64 Nf961ab382b5d4c0889a020372560493c rdf:first sg:person.011030227157.27
65 rdf:rest N2eaffff1a4df4c84863d1afe6f2fc34e
66 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
67 schema:name Chemical Sciences
68 rdf:type schema:DefinedTerm
69 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
70 schema:name Physical Chemistry (incl. Structural)
71 rdf:type schema:DefinedTerm
72 sg:journal.1028317 schema:issn 1388-0764
73 1572-896X
74 schema:name Journal of Nanoparticle Research
75 rdf:type schema:Periodical
76 sg:person.010126250665.75 schema:affiliation https://www.grid.ac/institutes/grid.134563.6
77 schema:familyName Huang
78 schema:givenName Zan
79 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010126250665.75
80 rdf:type schema:Person
81 sg:person.011030227157.27 schema:affiliation https://www.grid.ac/institutes/grid.134563.6
82 schema:familyName Ng
83 schema:givenName Gavin
84 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011030227157.27
85 rdf:type schema:Person
86 sg:person.011331341715.45 schema:affiliation https://www.grid.ac/institutes/grid.134563.6
87 schema:familyName Chen
88 schema:givenName Zhi-Kai
89 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011331341715.45
90 rdf:type schema:Person
91 sg:person.012060607115.89 schema:affiliation https://www.grid.ac/institutes/grid.134563.6
92 schema:familyName Yip
93 schema:givenName Alan
94 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012060607115.89
95 rdf:type schema:Person
96 sg:person.01320367405.07 schema:affiliation https://www.grid.ac/institutes/grid.134563.6
97 schema:familyName Chen
98 schema:givenName Hsinchun
99 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01320367405.07
100 rdf:type schema:Person
101 sg:person.016441452115.23 schema:affiliation https://www.grid.ac/institutes/grid.134563.6
102 schema:familyName Guo
103 schema:givenName Fei
104 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016441452115.23
105 rdf:type schema:Person
106 sg:person.0653064203.62 schema:affiliation https://www.grid.ac/institutes/grid.431093.c
107 schema:familyName Roco
108 schema:givenName Mihail C.
109 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0653064203.62
110 rdf:type schema:Person
111 sg:pub.10.1007/bf02016800 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014346654
112 https://doi.org/10.1007/bf02016800
113 rdf:type schema:CreativeWork
114 sg:pub.10.1023/a:1013248621015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037696350
115 https://doi.org/10.1023/a:1013248621015
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1002/(sici)1097-4571(19980515)49:7<582::aid-asi2>3.0.co;2-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1007998578
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1002/(sici)1097-4571(1999)50:9<799::aid-asi9>3.0.co;2-g schema:sameAs https://app.dimensions.ai/details/publication/pub.1043803644
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1002/1097-024x(200009)30:11<1203::aid-spe338>3.0.co;2-n schema:sameAs https://app.dimensions.ai/details/publication/pub.1011815659
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1006/jvci.1996.0008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024102032
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1016/s0172-2190(97)00033-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002866778
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1080/07421222.1999.11518256 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046296068
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1109/2.910895 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061106359
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1126/science.122.3159.108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062466125
132 rdf:type schema:CreativeWork
133 https://www.grid.ac/institutes/grid.134563.6 schema:alternateName University of Arizona
134 schema:name Artificial Intelligence Lab, Department of Management Information Systems, Eller College of Business and Public Administration, The University of Arizona, 85721, Tucson, AZ, USA
135 rdf:type schema:Organization
136 https://www.grid.ac/institutes/grid.431093.c schema:alternateName National Science Foundation
137 schema:name National Science Foundation, 4201 Wilson Blvd., 22230, Arlington, VA, USA
138 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...