The Progress of the Taiwan Oscillation Network Project View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2003-04

AUTHORS

Ming-Tsung Sun, Dean-Yi Chou, the TON Team

ABSTRACT

We describe the present status of the project of the Taiwan Oscillation Network (TON) and discuss a scientific result using the TON data. The TON is a ground-based network to measure solar intensity oscillations for the study of the solar interior. Four telescopes have been installed in appropriate longitudes around the world. The TON telescopes take K-line full-disk solar images of diameter 1000 pixels at a rate of one image per minute. The data has been collected since October of 1993. The TON high-spatial-resolution data are specially suitable for the study of local properties of the Sun. In 1997 we developed a new method, acoustic imaging, to construct the acoustic signals inside the Sun with the acoustic signals measured at the solar surface. From the constructed signals, we can form intensity map and phase-shift map of an active region at various depths. The direct link between these maps and the subsurface wave-speed perturbation suffers from the poor vertical resolution of acoustic imaging. Recently an inversion method has been developed to invert the measured phase travel time perturbation to estimate the distribution of wave-speed perturbation based on the ray approximation. This technique of acoustic imaging has been used to image the far-side of the Sun that could provides information on space weather prediction. More... »

PAGES

103-106

Identifiers

URI

http://scigraph.springernature.com/pub.10.1023/a:1025511403504

DOI

http://dx.doi.org/10.1023/a:1025511403504

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1014669382


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0201", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Astronomical and Space Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Chang Gung University", 
          "id": "https://www.grid.ac/institutes/grid.145695.a", 
          "name": [
            "Department of Mechanical Engineering, Chang-Gung University, Taiwan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sun", 
        "givenName": "Ming-Tsung", 
        "id": "sg:person.016034132166.36", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016034132166.36"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Tsing Hua University", 
          "id": "https://www.grid.ac/institutes/grid.38348.34", 
          "name": [
            "Physics Department, Tsing Hua University, 30043, Hsinchu, Taiwan, R.O.C"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chou", 
        "givenName": "Dean-Yi", 
        "id": "sg:person.07546665213.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07546665213.30"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Tsing Hua University", 
          "id": "https://www.grid.ac/institutes/grid.38348.34", 
          "name": [
            "Physics Department, Tsing Hua University, 30043, Hsinchu, Taiwan, R.O.C"
          ], 
          "type": "Organization"
        }, 
        "familyName": "TON Team", 
        "givenName": "the", 
        "id": "sg:person.012247524410.20", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012247524410.20"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/39822", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006379880", 
          "https://doi.org/10.1038/39822"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/39822", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006379880", 
          "https://doi.org/10.1038/39822"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/362430a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019035899", 
          "https://doi.org/10.1038/362430a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1020909524039", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020199344", 
          "https://doi.org/10.1023/a:1020909524039"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1005251208431", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021612106", 
          "https://doi.org/10.1023/a:1005251208431"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00732806", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044919951", 
          "https://doi.org/10.1007/bf00732806"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00732806", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044919951", 
          "https://doi.org/10.1007/bf00732806"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/304868", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058612392"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/306960", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058614482"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/308655", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058616174"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/311438", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058618917"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.287.5459.1799", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062568685"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2003-04", 
    "datePublishedReg": "2003-04-01", 
    "description": "We describe the present status of the project of the Taiwan Oscillation Network (TON) and discuss a scientific result using the TON data. The TON is a ground-based network to measure solar intensity oscillations for the study of the solar interior. Four telescopes have been installed in appropriate longitudes around the world. The TON telescopes take K-line full-disk solar images of diameter 1000 pixels at a rate of one image per minute. The data has been collected since October of 1993. The TON high-spatial-resolution data are specially suitable for the study of local properties of the Sun. In 1997 we developed a new method, acoustic imaging, to construct the acoustic signals inside the Sun with the acoustic signals measured at the solar surface. From the constructed signals, we can form intensity map and phase-shift map of an active region at various depths. The direct link between these maps and the subsurface wave-speed perturbation suffers from the poor vertical resolution of acoustic imaging. Recently an inversion method has been developed to invert the measured phase travel time perturbation to estimate the distribution of wave-speed perturbation based on the ray approximation. This technique of acoustic imaging has been used to image the far-side of the Sun that could provides information on space weather prediction.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1023/a:1025511403504", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1026170", 
        "issn": [
          "0038-6308", 
          "1572-9672"
        ], 
        "name": "Space Science Reviews", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1-2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "107"
      }
    ], 
    "name": "The Progress of the Taiwan Oscillation Network Project", 
    "pagination": "103-106", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "45e34eea787b4e60302704b49e421bdb72e1c023e776ba49a6d5551f3ed17434"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1023/a:1025511403504"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1014669382"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1023/a:1025511403504", 
      "https://app.dimensions.ai/details/publication/pub.1014669382"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T18:25", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8675_00000536.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1023%2FA%3A1025511403504"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1023/a:1025511403504'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1023/a:1025511403504'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1023/a:1025511403504'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1023/a:1025511403504'


 

This table displays all metadata directly associated to this object as RDF triples.

113 TRIPLES      21 PREDICATES      37 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1023/a:1025511403504 schema:about anzsrc-for:02
2 anzsrc-for:0201
3 schema:author N85ca131fff604dacac566cb3275d769a
4 schema:citation sg:pub.10.1007/bf00732806
5 sg:pub.10.1023/a:1005251208431
6 sg:pub.10.1023/a:1020909524039
7 sg:pub.10.1038/362430a0
8 sg:pub.10.1038/39822
9 https://doi.org/10.1086/304868
10 https://doi.org/10.1086/306960
11 https://doi.org/10.1086/308655
12 https://doi.org/10.1086/311438
13 https://doi.org/10.1126/science.287.5459.1799
14 schema:datePublished 2003-04
15 schema:datePublishedReg 2003-04-01
16 schema:description We describe the present status of the project of the Taiwan Oscillation Network (TON) and discuss a scientific result using the TON data. The TON is a ground-based network to measure solar intensity oscillations for the study of the solar interior. Four telescopes have been installed in appropriate longitudes around the world. The TON telescopes take K-line full-disk solar images of diameter 1000 pixels at a rate of one image per minute. The data has been collected since October of 1993. The TON high-spatial-resolution data are specially suitable for the study of local properties of the Sun. In 1997 we developed a new method, acoustic imaging, to construct the acoustic signals inside the Sun with the acoustic signals measured at the solar surface. From the constructed signals, we can form intensity map and phase-shift map of an active region at various depths. The direct link between these maps and the subsurface wave-speed perturbation suffers from the poor vertical resolution of acoustic imaging. Recently an inversion method has been developed to invert the measured phase travel time perturbation to estimate the distribution of wave-speed perturbation based on the ray approximation. This technique of acoustic imaging has been used to image the far-side of the Sun that could provides information on space weather prediction.
17 schema:genre research_article
18 schema:inLanguage en
19 schema:isAccessibleForFree false
20 schema:isPartOf N85a19477b13c4e37a2084b2d53283dc2
21 N9cf4d779c53c488ca8949116a1a6109d
22 sg:journal.1026170
23 schema:name The Progress of the Taiwan Oscillation Network Project
24 schema:pagination 103-106
25 schema:productId N1b08afc99d954a68a87cc5ccd7deb43a
26 N1f774cd5db79455281fff0a1e1f403dd
27 Nac5503abb3e146ba9c69c529fd088ad9
28 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014669382
29 https://doi.org/10.1023/a:1025511403504
30 schema:sdDatePublished 2019-04-10T18:25
31 schema:sdLicense https://scigraph.springernature.com/explorer/license/
32 schema:sdPublisher Ne8bc34dfe49c4346993785b15876b263
33 schema:url http://link.springer.com/10.1023%2FA%3A1025511403504
34 sgo:license sg:explorer/license/
35 sgo:sdDataset articles
36 rdf:type schema:ScholarlyArticle
37 N1b08afc99d954a68a87cc5ccd7deb43a schema:name doi
38 schema:value 10.1023/a:1025511403504
39 rdf:type schema:PropertyValue
40 N1f774cd5db79455281fff0a1e1f403dd schema:name dimensions_id
41 schema:value pub.1014669382
42 rdf:type schema:PropertyValue
43 N85a19477b13c4e37a2084b2d53283dc2 schema:issueNumber 1-2
44 rdf:type schema:PublicationIssue
45 N85ca131fff604dacac566cb3275d769a rdf:first sg:person.016034132166.36
46 rdf:rest Nf9528c7347bf45b28f82530207dff7bb
47 N9cf4d779c53c488ca8949116a1a6109d schema:volumeNumber 107
48 rdf:type schema:PublicationVolume
49 Nac5503abb3e146ba9c69c529fd088ad9 schema:name readcube_id
50 schema:value 45e34eea787b4e60302704b49e421bdb72e1c023e776ba49a6d5551f3ed17434
51 rdf:type schema:PropertyValue
52 Nce43ef7c31e8434bbb114d16cdeb3afd rdf:first sg:person.012247524410.20
53 rdf:rest rdf:nil
54 Ne8bc34dfe49c4346993785b15876b263 schema:name Springer Nature - SN SciGraph project
55 rdf:type schema:Organization
56 Nf9528c7347bf45b28f82530207dff7bb rdf:first sg:person.07546665213.30
57 rdf:rest Nce43ef7c31e8434bbb114d16cdeb3afd
58 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
59 schema:name Physical Sciences
60 rdf:type schema:DefinedTerm
61 anzsrc-for:0201 schema:inDefinedTermSet anzsrc-for:
62 schema:name Astronomical and Space Sciences
63 rdf:type schema:DefinedTerm
64 sg:journal.1026170 schema:issn 0038-6308
65 1572-9672
66 schema:name Space Science Reviews
67 rdf:type schema:Periodical
68 sg:person.012247524410.20 schema:affiliation https://www.grid.ac/institutes/grid.38348.34
69 schema:familyName TON Team
70 schema:givenName the
71 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012247524410.20
72 rdf:type schema:Person
73 sg:person.016034132166.36 schema:affiliation https://www.grid.ac/institutes/grid.145695.a
74 schema:familyName Sun
75 schema:givenName Ming-Tsung
76 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016034132166.36
77 rdf:type schema:Person
78 sg:person.07546665213.30 schema:affiliation https://www.grid.ac/institutes/grid.38348.34
79 schema:familyName Chou
80 schema:givenName Dean-Yi
81 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07546665213.30
82 rdf:type schema:Person
83 sg:pub.10.1007/bf00732806 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044919951
84 https://doi.org/10.1007/bf00732806
85 rdf:type schema:CreativeWork
86 sg:pub.10.1023/a:1005251208431 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021612106
87 https://doi.org/10.1023/a:1005251208431
88 rdf:type schema:CreativeWork
89 sg:pub.10.1023/a:1020909524039 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020199344
90 https://doi.org/10.1023/a:1020909524039
91 rdf:type schema:CreativeWork
92 sg:pub.10.1038/362430a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019035899
93 https://doi.org/10.1038/362430a0
94 rdf:type schema:CreativeWork
95 sg:pub.10.1038/39822 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006379880
96 https://doi.org/10.1038/39822
97 rdf:type schema:CreativeWork
98 https://doi.org/10.1086/304868 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058612392
99 rdf:type schema:CreativeWork
100 https://doi.org/10.1086/306960 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058614482
101 rdf:type schema:CreativeWork
102 https://doi.org/10.1086/308655 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058616174
103 rdf:type schema:CreativeWork
104 https://doi.org/10.1086/311438 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058618917
105 rdf:type schema:CreativeWork
106 https://doi.org/10.1126/science.287.5459.1799 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062568685
107 rdf:type schema:CreativeWork
108 https://www.grid.ac/institutes/grid.145695.a schema:alternateName Chang Gung University
109 schema:name Department of Mechanical Engineering, Chang-Gung University, Taiwan
110 rdf:type schema:Organization
111 https://www.grid.ac/institutes/grid.38348.34 schema:alternateName National Tsing Hua University
112 schema:name Physics Department, Tsing Hua University, 30043, Hsinchu, Taiwan, R.O.C
113 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...