Asymptotics of the Discrete Spectrum of the Three-Particle Schrödinger Difference Operator on a Lattice View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2003-08

AUTHORS

J. I. Abdullaev, S. N. Lakaev

ABSTRACT

We consider the Hamiltonian Hμ(K) of a system consisting of three bosons that interact through attractive pair contact potentials on a three-dimensional integer lattice. We obtain an asymptotic value for the number N(K,z) of eigenvalues of the operator Hμ0(K) lying below z ≤ 0 with respect to the total quasimomentum K → 0 and the spectral parameter z → −0. More... »

PAGES

1096-1109

References to SciGraph publications

  • 1993-07. On Efimov's effect in a system of three identical quantum particles in FUNCTIONAL ANALYSIS AND ITS APPLICATIONS
  • 1991-10-01. On the infinite number of three-particle bound states of a system of three quantum lattice particles in THEORETICAL AND MATHEMATICAL PHYSICS
  • 2002-05. Spectrum of the Three-Particle Schrödinger Difference Operator on a Lattice in MATHEMATICAL NOTES
  • 1997-04. Finiteness of the discrete spectrum of the three-particle schrödinger equation on a lattice in THEORETICAL AND MATHEMATICAL PHYSICS
  • 1993-09. The Efimov effect. Discrete spectrum asymptotics in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 1989. The problem of a few quasi-particles in solid-state physics in APPLICATIONS OF SELF-ADJOINT EXTENSIONS IN QUANTUM PHYSICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1023/a:1025061820767

    DOI

    http://dx.doi.org/10.1023/a:1025061820767

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1046058041


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Samarkand State University, Samarkand, Uzbekistan", 
              "id": "http://www.grid.ac/institutes/grid.77443.33", 
              "name": [
                "Samarkand State University, Samarkand, Uzbekistan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Abdullaev", 
            "givenName": "J. I.", 
            "id": "sg:person.07514333275.01", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07514333275.01"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Samarkand State University, Samarkand, Uzbekistan", 
              "id": "http://www.grid.ac/institutes/grid.77443.33", 
              "name": [
                "Samarkand State University, Samarkand, Uzbekistan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lakaev", 
            "givenName": "S. N.", 
            "id": "sg:person.014651603551.32", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014651603551.32"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf02634201", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042807379", 
              "https://doi.org/10.1007/bf02634201"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bfb0022946", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016631416", 
              "https://doi.org/10.1007/bfb0022946"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01016808", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005114394", 
              "https://doi.org/10.1007/bf01016808"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02096734", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017389654", 
              "https://doi.org/10.1007/bf02096734"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01087534", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016488912", 
              "https://doi.org/10.1007/bf01087534"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1015831803838", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010669590", 
              "https://doi.org/10.1023/a:1015831803838"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2003-08", 
        "datePublishedReg": "2003-08-01", 
        "description": "We consider the Hamiltonian H\u03bc(K) of a system consisting of three bosons that interact through attractive pair contact potentials on a three-dimensional integer lattice. We obtain an asymptotic value for the number N(K,z) of eigenvalues of the operator H\u03bc0(K) lying below z\u2009\u2264\u20090 with respect to the total quasimomentum K\u2009\u2192\u20090 and the spectral parameter z\u2009\u2192\u2009\u22120.", 
        "genre": "article", 
        "id": "sg:pub.10.1023/a:1025061820767", 
        "inLanguage": "en", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1327888", 
            "issn": [
              "0040-5779", 
              "2305-3135"
            ], 
            "name": "Theoretical and Mathematical Physics", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "2", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "136"
          }
        ], 
        "keywords": [
          "spectral parameter z", 
          "difference operator", 
          "integer lattice", 
          "discrete spectrum", 
          "operators", 
          "parameter Z", 
          "asymptotic value", 
          "quasimomentum k", 
          "eigenvalues", 
          "asymptotics", 
          "Hamiltonian", 
          "lattice", 
          "bosons", 
          "system", 
          "respect", 
          "number", 
          "values", 
          "contact potential", 
          "spectra", 
          "potential", 
          "attractive pair contact potentials", 
          "pair contact potentials", 
          "three-dimensional integer lattice", 
          "total quasimomentum K", 
          "Three-Particle Schr\u00f6dinger Difference Operator", 
          "Schr\u00f6dinger Difference Operator"
        ], 
        "name": "Asymptotics of the Discrete Spectrum of the Three-Particle Schr\u00f6dinger Difference Operator on a Lattice", 
        "pagination": "1096-1109", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1046058041"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1023/a:1025061820767"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1023/a:1025061820767", 
          "https://app.dimensions.ai/details/publication/pub.1046058041"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-01-01T18:12", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_371.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1023/a:1025061820767"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1023/a:1025061820767'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1023/a:1025061820767'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1023/a:1025061820767'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1023/a:1025061820767'


     

    This table displays all metadata directly associated to this object as RDF triples.

    115 TRIPLES      22 PREDICATES      58 URIs      44 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1023/a:1025061820767 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author N4af569ab7e0346a1a7598c0ac6cc29ae
    4 schema:citation sg:pub.10.1007/bf01016808
    5 sg:pub.10.1007/bf01087534
    6 sg:pub.10.1007/bf02096734
    7 sg:pub.10.1007/bf02634201
    8 sg:pub.10.1007/bfb0022946
    9 sg:pub.10.1023/a:1015831803838
    10 schema:datePublished 2003-08
    11 schema:datePublishedReg 2003-08-01
    12 schema:description We consider the Hamiltonian Hμ(K) of a system consisting of three bosons that interact through attractive pair contact potentials on a three-dimensional integer lattice. We obtain an asymptotic value for the number N(K,z) of eigenvalues of the operator Hμ0(K) lying below z ≤ 0 with respect to the total quasimomentum K → 0 and the spectral parameter z → −0.
    13 schema:genre article
    14 schema:inLanguage en
    15 schema:isAccessibleForFree false
    16 schema:isPartOf N0cc14bec0af744f395a4ed62b49c59e5
    17 N7825139a0c9b4f2eacbbf2b66b7e1833
    18 sg:journal.1327888
    19 schema:keywords Hamiltonian
    20 Schrödinger Difference Operator
    21 Three-Particle Schrödinger Difference Operator
    22 asymptotic value
    23 asymptotics
    24 attractive pair contact potentials
    25 bosons
    26 contact potential
    27 difference operator
    28 discrete spectrum
    29 eigenvalues
    30 integer lattice
    31 lattice
    32 number
    33 operators
    34 pair contact potentials
    35 parameter Z
    36 potential
    37 quasimomentum k
    38 respect
    39 spectra
    40 spectral parameter z
    41 system
    42 three-dimensional integer lattice
    43 total quasimomentum K
    44 values
    45 schema:name Asymptotics of the Discrete Spectrum of the Three-Particle Schrödinger Difference Operator on a Lattice
    46 schema:pagination 1096-1109
    47 schema:productId N4d12593ecdcc4acfb0fa68e0c2c42f99
    48 Nfecfeda5621f42a38faa8654369454eb
    49 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046058041
    50 https://doi.org/10.1023/a:1025061820767
    51 schema:sdDatePublished 2022-01-01T18:12
    52 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    53 schema:sdPublisher N8292270132764a239e78a8d7545f4fbb
    54 schema:url https://doi.org/10.1023/a:1025061820767
    55 sgo:license sg:explorer/license/
    56 sgo:sdDataset articles
    57 rdf:type schema:ScholarlyArticle
    58 N0cc14bec0af744f395a4ed62b49c59e5 schema:issueNumber 2
    59 rdf:type schema:PublicationIssue
    60 N4af569ab7e0346a1a7598c0ac6cc29ae rdf:first sg:person.07514333275.01
    61 rdf:rest N50633518d42d4497be1d3dc3b40caa02
    62 N4d12593ecdcc4acfb0fa68e0c2c42f99 schema:name doi
    63 schema:value 10.1023/a:1025061820767
    64 rdf:type schema:PropertyValue
    65 N50633518d42d4497be1d3dc3b40caa02 rdf:first sg:person.014651603551.32
    66 rdf:rest rdf:nil
    67 N7825139a0c9b4f2eacbbf2b66b7e1833 schema:volumeNumber 136
    68 rdf:type schema:PublicationVolume
    69 N8292270132764a239e78a8d7545f4fbb schema:name Springer Nature - SN SciGraph project
    70 rdf:type schema:Organization
    71 Nfecfeda5621f42a38faa8654369454eb schema:name dimensions_id
    72 schema:value pub.1046058041
    73 rdf:type schema:PropertyValue
    74 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    75 schema:name Mathematical Sciences
    76 rdf:type schema:DefinedTerm
    77 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    78 schema:name Pure Mathematics
    79 rdf:type schema:DefinedTerm
    80 sg:journal.1327888 schema:issn 0040-5779
    81 2305-3135
    82 schema:name Theoretical and Mathematical Physics
    83 schema:publisher Springer Nature
    84 rdf:type schema:Periodical
    85 sg:person.014651603551.32 schema:affiliation grid-institutes:grid.77443.33
    86 schema:familyName Lakaev
    87 schema:givenName S. N.
    88 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014651603551.32
    89 rdf:type schema:Person
    90 sg:person.07514333275.01 schema:affiliation grid-institutes:grid.77443.33
    91 schema:familyName Abdullaev
    92 schema:givenName J. I.
    93 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07514333275.01
    94 rdf:type schema:Person
    95 sg:pub.10.1007/bf01016808 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005114394
    96 https://doi.org/10.1007/bf01016808
    97 rdf:type schema:CreativeWork
    98 sg:pub.10.1007/bf01087534 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016488912
    99 https://doi.org/10.1007/bf01087534
    100 rdf:type schema:CreativeWork
    101 sg:pub.10.1007/bf02096734 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017389654
    102 https://doi.org/10.1007/bf02096734
    103 rdf:type schema:CreativeWork
    104 sg:pub.10.1007/bf02634201 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042807379
    105 https://doi.org/10.1007/bf02634201
    106 rdf:type schema:CreativeWork
    107 sg:pub.10.1007/bfb0022946 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016631416
    108 https://doi.org/10.1007/bfb0022946
    109 rdf:type schema:CreativeWork
    110 sg:pub.10.1023/a:1015831803838 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010669590
    111 https://doi.org/10.1023/a:1015831803838
    112 rdf:type schema:CreativeWork
    113 grid-institutes:grid.77443.33 schema:alternateName Samarkand State University, Samarkand, Uzbekistan
    114 schema:name Samarkand State University, Samarkand, Uzbekistan
    115 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...