Discovery and characterization of electron transfer proteins in the photosynthetic bacteria View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2003-06

AUTHORS

Terrance E. Meyer, Michael A. Cusanovich

ABSTRACT

Research on photosynthetic electron transfer closely parallels that of other electron transfer pathways and in many cases they overlap. Thus, the first bacterial cytochrome to be characterized, called cytochrome c2, is commonly found in non-sulfur purple photosynthetic bacteria and is a close homolog of mitochondrial cytochrome c. The cytochrome bc1 complex is an integral part of photosynthetic electron transfer yet, like cytochrome c2, was first recognized as a respiratory component. Cytochromes c2 mediate electron transfer between the cytochrome bc1 complex and photosynthetic reaction centers and cytochrome a-type oxidases. Not all photosynthetic bacteria contain cytochrome c2; instead it is thought that HiPIP, auracyanin, Halorhodospira cytochrome c551, Chlorobium cytochrome c555, and cytochrome c8 may function in a similar manner as photosynthetic electron carriers between the cytochrome bc1 complex and reaction centers. More often than not, the soluble or periplasmic mediators do not interact directly with the reaction center bacteriochlorophyll, but require the presence of membrane-bound intermediates: a tetraheme cytochrome c in purple bacteria and a monoheme cytochrome c in green bacteria. Cyclic electron transfer in photosynthesis requires that the redox potential of the system be delicately poised for optimum efficiency. In fact, lack of redox poise may be one of the defects in the aerobic phototrophic bacteria. Thus, large concentrations of cytochromes c2 and c′ may additionally poise the redox potential of the cyclic photosystem of purple bacteria. Other cytochromes, such as flavocytochrome c (FCSD or SoxEF) and cytochrome c551 (SoxA), may feed electrons from sulfide, sulfur, and thiosulfate into the photosynthetic pathways via the same soluble carriers as are part of the cyclic system. More... »

PAGES

111-126

References to SciGraph publications

  • 2001-10. The home stretch, a first analysis of the nearly completed genome of Rhodobacter sphaeroides 2.4.1 in PHOTOSYNTHESIS RESEARCH
  • 1980-07. Structure of cytochrome c′: a dimeric, high-spin haem protein in NATURE
  • 1979-04. Anomalies in amino acid sequences of small cytochromes c and cytochromes c′ from two species of purple photosynthetic bacteria in NATURE
  • 1984-11. Utilization of sulfide and elemental sulfur by Ectothiorhodospira halochloris in ARCHIVES OF MICROBIOLOGY
  • 2001-10. The Rhodobacter capsulatus genome in PHOTOSYNTHESIS RESEARCH
  • 1997-04. A novel membrane-bound flavocytochrome c sulfide dehydrogenase from the colourless sulfur bacterium Thiobacillus sp. W5 in ARCHIVES OF MICROBIOLOGY
  • 1979-04. Cytochromes C2 sequence variation among the recognised species of purple nonsulphur photosynthetic bacteria in NATURE
  • 1998-03. Role of HiPIP as electron donor to the RC-bound cytochrome in photosynthetic purple bacteria in PHOTOSYNTHESIS RESEARCH
  • 1985-12. Structure of the protein subunits in the photosynthetic reaction centre of Rhodopseudomonas viridis at 3Å resolution in NATURE
  • 1998-06. Sulfide oxidation in the phototrophic sulfur bacterium Chromatium vinosum in ARCHIVES OF MICROBIOLOGY
  • 1979-03. A high-potential nonheme iron protein (HiPIP)-linked, thiosulfate-oxidizing enzyme derived fromChromatium vinosum in CURRENT MICROBIOLOGY
  • 1962-08. Ferredoxins as Electron Carriers in Photosynthesis and in the Biological Production and Consumption of Hydrogen Gas in NATURE
  • 1983-09. Sulfide oxidation in Ectothiorhodospira abdelmalekii. Evidence for the catalytic role of cytochrome c-551 in ARCHIVES OF MICROBIOLOGY
  • 1994-02. A transcription unit for the Rieske FeS-protein and cytochrome b in Chlorobium limicola in PHOTOSYNTHESIS RESEARCH
  • 1999. Sulfide-Dependent Anoxygenic Photosynthesis in Prokaryotes in THE PHOTOTROPHIC PROKARYOTES
  • 1988. Soluble Electron-Transfer Proteins of Chlorobiacere in GREEN PHOTOSYNTHETIC BACTERIA
  • 2001-03. Respiratory electron transport and light-induced energy transduction in membranes from the aerobic photosynthetic bacterium Roseobacter denitrificans in ARCHIVES OF MICROBIOLOGY
  • 1990-01. Isolation and characterization of the membrane-bound cytochrome c-554 from the thermophilic green photosynthetic bacterium Chloroflexus aurantiacus in PHOTOSYNTHESIS RESEARCH
  • 1998-04. Electron transfer by domain movement in cytochrome bc1 in NATURE
  • 1960-05. A New Copper Protein from Chlorella Ellipsoidea in NATURE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1023/a:1024910323089

    DOI

    http://dx.doi.org/10.1023/a:1024910323089

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1022742686

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/16228571


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biochemistry and Cell Biology", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Biochemistry, University of Arizona, 85721, Tucson, AZ, USA", 
              "id": "http://www.grid.ac/institutes/grid.134563.6", 
              "name": [
                "Department of Biochemistry, University of Arizona, 85721, Tucson, AZ, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Meyer", 
            "givenName": "Terrance E.", 
            "id": "sg:person.07671544322.76", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07671544322.76"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Biochemistry, University of Arizona, 85721, Tucson, AZ, USA", 
              "id": "http://www.grid.ac/institutes/grid.134563.6", 
              "name": [
                "Department of Biochemistry, University of Arizona, 85721, Tucson, AZ, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Cusanovich", 
            "givenName": "Michael A.", 
            "id": "sg:person.015444402554.40", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015444402554.40"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/978-1-4613-1021-1_15", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010629656", 
              "https://doi.org/10.1007/978-1-4613-1021-1_15"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00413477", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021328365", 
              "https://doi.org/10.1007/bf00413477"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s002030050615", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022667871", 
              "https://doi.org/10.1007/s002030050615"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/33612", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043922185", 
              "https://doi.org/10.1038/33612"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1005989900756", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007009969", 
              "https://doi.org/10.1023/a:1005989900756"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/186533a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036241877", 
              "https://doi.org/10.1038/186533a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/318618a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020599081", 
              "https://doi.org/10.1038/318618a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1013883807771", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042249771", 
              "https://doi.org/10.1023/a:1013883807771"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/195537a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044832445", 
              "https://doi.org/10.1038/195537a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4615-4827-0_26", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004617554", 
              "https://doi.org/10.1007/978-1-4615-4827-0_26"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1013831823701", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040814630", 
              "https://doi.org/10.1023/a:1013831823701"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00408369", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027299885", 
              "https://doi.org/10.1007/bf00408369"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/286302a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053739582", 
              "https://doi.org/10.1038/286302a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s002030100251", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039336366", 
              "https://doi.org/10.1007/s002030100251"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02602443", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010027752", 
              "https://doi.org/10.1007/bf02602443"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00030060", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015413345", 
              "https://doi.org/10.1007/bf00030060"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s002030050447", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003759361", 
              "https://doi.org/10.1007/s002030050447"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00029383", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021635135", 
              "https://doi.org/10.1007/bf00029383"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/278659a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013208943", 
              "https://doi.org/10.1038/278659a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/278661a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014896554", 
              "https://doi.org/10.1038/278661a0"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2003-06", 
        "datePublishedReg": "2003-06-01", 
        "description": "Research on photosynthetic electron transfer closely parallels that of other electron transfer pathways and in many cases they overlap. Thus, the first bacterial cytochrome to be characterized, called cytochrome c2, is commonly found in non-sulfur purple photosynthetic bacteria and is a close homolog of mitochondrial cytochrome c. The cytochrome bc1 complex is an integral part of photosynthetic electron transfer yet, like cytochrome c2, was first recognized as a respiratory component. Cytochromes c2 mediate electron transfer between the cytochrome bc1 complex and photosynthetic reaction centers and cytochrome a-type oxidases. Not all photosynthetic bacteria contain cytochrome c2; instead it is thought that HiPIP, auracyanin, Halorhodospira cytochrome c551, Chlorobium cytochrome c555, and cytochrome c8 may function in a similar manner as photosynthetic electron carriers between the cytochrome bc1 complex and reaction centers. More often than not, the soluble or periplasmic mediators do not interact directly with the reaction center bacteriochlorophyll, but require the presence of membrane-bound intermediates: a tetraheme cytochrome c in purple bacteria and a monoheme cytochrome c in green bacteria. Cyclic electron transfer in photosynthesis requires that the redox potential of the system be delicately poised for optimum efficiency. In fact, lack of redox poise may be one of the defects in the aerobic phototrophic bacteria. Thus, large concentrations of cytochromes c2 and c\u2032 may additionally poise the redox potential of the cyclic photosystem of purple bacteria. Other cytochromes, such as flavocytochrome c (FCSD or SoxEF) and cytochrome c551 (SoxA), may feed electrons from sulfide, sulfur, and thiosulfate into the photosynthetic pathways via the same soluble carriers as are part of the cyclic system.", 
        "genre": "article", 
        "id": "sg:pub.10.1023/a:1024910323089", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1022986", 
            "issn": [
              "0166-8595", 
              "1573-5079"
            ], 
            "name": "Photosynthesis Research", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1-3", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "76"
          }
        ], 
        "keywords": [
          "cytochrome bc1 complex", 
          "photosynthetic electron transfer", 
          "photosynthetic bacteria", 
          "cytochrome c2", 
          "bc1 complex", 
          "purple bacteria", 
          "cytochrome c551", 
          "cytochrome c", 
          "non-sulfur purple photosynthetic bacteria", 
          "aerobic phototrophic bacteria", 
          "photosynthetic electron carriers", 
          "monoheme cytochrome c", 
          "mitochondrial cytochrome c.", 
          "purple photosynthetic bacteria", 
          "membrane-bound intermediates", 
          "electron transfer proteins", 
          "cyclic electron transfer", 
          "tetraheme cytochrome c", 
          "photosynthetic pathway", 
          "reaction centers", 
          "close homolog", 
          "redox poise", 
          "phototrophic bacteria", 
          "flavocytochrome c", 
          "cytochrome bc1", 
          "green bacteria", 
          "cytochrome c555", 
          "type oxidase", 
          "transfer protein", 
          "bacterial cytochromes", 
          "photosynthetic reaction centers", 
          "cytochrome c.", 
          "cytochrome c8", 
          "electron transfer pathway", 
          "bacteria", 
          "electron carriers", 
          "redox potential", 
          "c551", 
          "cytochrome", 
          "pathway", 
          "respiratory components", 
          "homolog", 
          "transfer pathway", 
          "photosynthesis", 
          "complexes", 
          "BC1", 
          "photosystems", 
          "c555", 
          "protein", 
          "electron transfer", 
          "reaction center bacteriochlorophyll", 
          "HiPIP", 
          "bacteriochlorophyll", 
          "soluble carriers", 
          "similar manner", 
          "oxidase", 
          "discovery", 
          "poise", 
          "C2", 
          "intermediates", 
          "characterization", 
          "manner", 
          "potential", 
          "transfer", 
          "C.", 
          "mediators", 
          "defects", 
          "C8", 
          "large concentrations", 
          "integral part", 
          "presence", 
          "part", 
          "components", 
          "sulfur", 
          "concentration", 
          "lack", 
          "system", 
          "carriers", 
          "sulfide", 
          "fact", 
          "efficiency", 
          "research", 
          "cyclic systems", 
          "Cs", 
          "center", 
          "cases", 
          "optimum efficiency", 
          "electrons"
        ], 
        "name": "Discovery and characterization of electron transfer proteins in the photosynthetic bacteria", 
        "pagination": "111-126", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1022742686"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1023/a:1024910323089"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "16228571"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1023/a:1024910323089", 
          "https://app.dimensions.ai/details/publication/pub.1022742686"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-08-04T16:54", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220804/entities/gbq_results/article/article_372.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1023/a:1024910323089"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1023/a:1024910323089'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1023/a:1024910323089'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1023/a:1024910323089'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1023/a:1024910323089'


     

    This table displays all metadata directly associated to this object as RDF triples.

    236 TRIPLES      21 PREDICATES      134 URIs      106 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1023/a:1024910323089 schema:about anzsrc-for:06
    2 anzsrc-for:0601
    3 schema:author N9f981f62b36249c09581ab354c62355b
    4 schema:citation sg:pub.10.1007/978-1-4613-1021-1_15
    5 sg:pub.10.1007/978-1-4615-4827-0_26
    6 sg:pub.10.1007/bf00029383
    7 sg:pub.10.1007/bf00030060
    8 sg:pub.10.1007/bf00408369
    9 sg:pub.10.1007/bf00413477
    10 sg:pub.10.1007/bf02602443
    11 sg:pub.10.1007/s002030050447
    12 sg:pub.10.1007/s002030050615
    13 sg:pub.10.1007/s002030100251
    14 sg:pub.10.1023/a:1005989900756
    15 sg:pub.10.1023/a:1013831823701
    16 sg:pub.10.1023/a:1013883807771
    17 sg:pub.10.1038/186533a0
    18 sg:pub.10.1038/195537a0
    19 sg:pub.10.1038/278659a0
    20 sg:pub.10.1038/278661a0
    21 sg:pub.10.1038/286302a0
    22 sg:pub.10.1038/318618a0
    23 sg:pub.10.1038/33612
    24 schema:datePublished 2003-06
    25 schema:datePublishedReg 2003-06-01
    26 schema:description Research on photosynthetic electron transfer closely parallels that of other electron transfer pathways and in many cases they overlap. Thus, the first bacterial cytochrome to be characterized, called cytochrome c2, is commonly found in non-sulfur purple photosynthetic bacteria and is a close homolog of mitochondrial cytochrome c. The cytochrome bc1 complex is an integral part of photosynthetic electron transfer yet, like cytochrome c2, was first recognized as a respiratory component. Cytochromes c2 mediate electron transfer between the cytochrome bc1 complex and photosynthetic reaction centers and cytochrome a-type oxidases. Not all photosynthetic bacteria contain cytochrome c2; instead it is thought that HiPIP, auracyanin, Halorhodospira cytochrome c551, Chlorobium cytochrome c555, and cytochrome c8 may function in a similar manner as photosynthetic electron carriers between the cytochrome bc1 complex and reaction centers. More often than not, the soluble or periplasmic mediators do not interact directly with the reaction center bacteriochlorophyll, but require the presence of membrane-bound intermediates: a tetraheme cytochrome c in purple bacteria and a monoheme cytochrome c in green bacteria. Cyclic electron transfer in photosynthesis requires that the redox potential of the system be delicately poised for optimum efficiency. In fact, lack of redox poise may be one of the defects in the aerobic phototrophic bacteria. Thus, large concentrations of cytochromes c2 and c′ may additionally poise the redox potential of the cyclic photosystem of purple bacteria. Other cytochromes, such as flavocytochrome c (FCSD or SoxEF) and cytochrome c551 (SoxA), may feed electrons from sulfide, sulfur, and thiosulfate into the photosynthetic pathways via the same soluble carriers as are part of the cyclic system.
    27 schema:genre article
    28 schema:isAccessibleForFree false
    29 schema:isPartOf Ne43ca7ec1de042c6ae5eed264e0a5969
    30 Ne95c70d7d3434b2b8de47febca370079
    31 sg:journal.1022986
    32 schema:keywords BC1
    33 C.
    34 C2
    35 C8
    36 Cs
    37 HiPIP
    38 aerobic phototrophic bacteria
    39 bacteria
    40 bacterial cytochromes
    41 bacteriochlorophyll
    42 bc1 complex
    43 c551
    44 c555
    45 carriers
    46 cases
    47 center
    48 characterization
    49 close homolog
    50 complexes
    51 components
    52 concentration
    53 cyclic electron transfer
    54 cyclic systems
    55 cytochrome
    56 cytochrome bc1
    57 cytochrome bc1 complex
    58 cytochrome c
    59 cytochrome c.
    60 cytochrome c2
    61 cytochrome c551
    62 cytochrome c555
    63 cytochrome c8
    64 defects
    65 discovery
    66 efficiency
    67 electron carriers
    68 electron transfer
    69 electron transfer pathway
    70 electron transfer proteins
    71 electrons
    72 fact
    73 flavocytochrome c
    74 green bacteria
    75 homolog
    76 integral part
    77 intermediates
    78 lack
    79 large concentrations
    80 manner
    81 mediators
    82 membrane-bound intermediates
    83 mitochondrial cytochrome c.
    84 monoheme cytochrome c
    85 non-sulfur purple photosynthetic bacteria
    86 optimum efficiency
    87 oxidase
    88 part
    89 pathway
    90 photosynthesis
    91 photosynthetic bacteria
    92 photosynthetic electron carriers
    93 photosynthetic electron transfer
    94 photosynthetic pathway
    95 photosynthetic reaction centers
    96 photosystems
    97 phototrophic bacteria
    98 poise
    99 potential
    100 presence
    101 protein
    102 purple bacteria
    103 purple photosynthetic bacteria
    104 reaction center bacteriochlorophyll
    105 reaction centers
    106 redox poise
    107 redox potential
    108 research
    109 respiratory components
    110 similar manner
    111 soluble carriers
    112 sulfide
    113 sulfur
    114 system
    115 tetraheme cytochrome c
    116 transfer
    117 transfer pathway
    118 transfer protein
    119 type oxidase
    120 schema:name Discovery and characterization of electron transfer proteins in the photosynthetic bacteria
    121 schema:pagination 111-126
    122 schema:productId N13604c5a2fd347368530adb2eb76c6af
    123 N249de9778db94b1bb5ec9531833928e5
    124 N695533c46af440eb87e8e49c07d94bea
    125 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022742686
    126 https://doi.org/10.1023/a:1024910323089
    127 schema:sdDatePublished 2022-08-04T16:54
    128 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    129 schema:sdPublisher Na3e5246d79fe408387e5595c4bb3790e
    130 schema:url https://doi.org/10.1023/a:1024910323089
    131 sgo:license sg:explorer/license/
    132 sgo:sdDataset articles
    133 rdf:type schema:ScholarlyArticle
    134 N13604c5a2fd347368530adb2eb76c6af schema:name pubmed_id
    135 schema:value 16228571
    136 rdf:type schema:PropertyValue
    137 N249de9778db94b1bb5ec9531833928e5 schema:name dimensions_id
    138 schema:value pub.1022742686
    139 rdf:type schema:PropertyValue
    140 N45307314c8d5410187199e4efe5d6bc6 rdf:first sg:person.015444402554.40
    141 rdf:rest rdf:nil
    142 N695533c46af440eb87e8e49c07d94bea schema:name doi
    143 schema:value 10.1023/a:1024910323089
    144 rdf:type schema:PropertyValue
    145 N9f981f62b36249c09581ab354c62355b rdf:first sg:person.07671544322.76
    146 rdf:rest N45307314c8d5410187199e4efe5d6bc6
    147 Na3e5246d79fe408387e5595c4bb3790e schema:name Springer Nature - SN SciGraph project
    148 rdf:type schema:Organization
    149 Ne43ca7ec1de042c6ae5eed264e0a5969 schema:issueNumber 1-3
    150 rdf:type schema:PublicationIssue
    151 Ne95c70d7d3434b2b8de47febca370079 schema:volumeNumber 76
    152 rdf:type schema:PublicationVolume
    153 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    154 schema:name Biological Sciences
    155 rdf:type schema:DefinedTerm
    156 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
    157 schema:name Biochemistry and Cell Biology
    158 rdf:type schema:DefinedTerm
    159 sg:journal.1022986 schema:issn 0166-8595
    160 1573-5079
    161 schema:name Photosynthesis Research
    162 schema:publisher Springer Nature
    163 rdf:type schema:Periodical
    164 sg:person.015444402554.40 schema:affiliation grid-institutes:grid.134563.6
    165 schema:familyName Cusanovich
    166 schema:givenName Michael A.
    167 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015444402554.40
    168 rdf:type schema:Person
    169 sg:person.07671544322.76 schema:affiliation grid-institutes:grid.134563.6
    170 schema:familyName Meyer
    171 schema:givenName Terrance E.
    172 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07671544322.76
    173 rdf:type schema:Person
    174 sg:pub.10.1007/978-1-4613-1021-1_15 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010629656
    175 https://doi.org/10.1007/978-1-4613-1021-1_15
    176 rdf:type schema:CreativeWork
    177 sg:pub.10.1007/978-1-4615-4827-0_26 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004617554
    178 https://doi.org/10.1007/978-1-4615-4827-0_26
    179 rdf:type schema:CreativeWork
    180 sg:pub.10.1007/bf00029383 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021635135
    181 https://doi.org/10.1007/bf00029383
    182 rdf:type schema:CreativeWork
    183 sg:pub.10.1007/bf00030060 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015413345
    184 https://doi.org/10.1007/bf00030060
    185 rdf:type schema:CreativeWork
    186 sg:pub.10.1007/bf00408369 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027299885
    187 https://doi.org/10.1007/bf00408369
    188 rdf:type schema:CreativeWork
    189 sg:pub.10.1007/bf00413477 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021328365
    190 https://doi.org/10.1007/bf00413477
    191 rdf:type schema:CreativeWork
    192 sg:pub.10.1007/bf02602443 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010027752
    193 https://doi.org/10.1007/bf02602443
    194 rdf:type schema:CreativeWork
    195 sg:pub.10.1007/s002030050447 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003759361
    196 https://doi.org/10.1007/s002030050447
    197 rdf:type schema:CreativeWork
    198 sg:pub.10.1007/s002030050615 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022667871
    199 https://doi.org/10.1007/s002030050615
    200 rdf:type schema:CreativeWork
    201 sg:pub.10.1007/s002030100251 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039336366
    202 https://doi.org/10.1007/s002030100251
    203 rdf:type schema:CreativeWork
    204 sg:pub.10.1023/a:1005989900756 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007009969
    205 https://doi.org/10.1023/a:1005989900756
    206 rdf:type schema:CreativeWork
    207 sg:pub.10.1023/a:1013831823701 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040814630
    208 https://doi.org/10.1023/a:1013831823701
    209 rdf:type schema:CreativeWork
    210 sg:pub.10.1023/a:1013883807771 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042249771
    211 https://doi.org/10.1023/a:1013883807771
    212 rdf:type schema:CreativeWork
    213 sg:pub.10.1038/186533a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036241877
    214 https://doi.org/10.1038/186533a0
    215 rdf:type schema:CreativeWork
    216 sg:pub.10.1038/195537a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044832445
    217 https://doi.org/10.1038/195537a0
    218 rdf:type schema:CreativeWork
    219 sg:pub.10.1038/278659a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013208943
    220 https://doi.org/10.1038/278659a0
    221 rdf:type schema:CreativeWork
    222 sg:pub.10.1038/278661a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014896554
    223 https://doi.org/10.1038/278661a0
    224 rdf:type schema:CreativeWork
    225 sg:pub.10.1038/286302a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053739582
    226 https://doi.org/10.1038/286302a0
    227 rdf:type schema:CreativeWork
    228 sg:pub.10.1038/318618a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020599081
    229 https://doi.org/10.1038/318618a0
    230 rdf:type schema:CreativeWork
    231 sg:pub.10.1038/33612 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043922185
    232 https://doi.org/10.1038/33612
    233 rdf:type schema:CreativeWork
    234 grid-institutes:grid.134563.6 schema:alternateName Department of Biochemistry, University of Arizona, 85721, Tucson, AZ, USA
    235 schema:name Department of Biochemistry, University of Arizona, 85721, Tucson, AZ, USA
    236 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...