Bifurcations of a Thin Plate-Strip Excited Transversally and Axially View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2003-04

AUTHORS

J. Awrejcewicz, V. A. Krysko, G. G. Narkaitis

ABSTRACT

The complex vibrations and bifurcations of plates modeled as systemswith infinite degrees-of-freedom are considered. Both theBubnov–Galerkin with high-order approximations and finite differencemethods with approximation O(h4)are applied. In addition, the calculation ofthe Lyapunov exponents of the system is performed, and the results arecompared to those derived by Bennetin's method. Some examples of newnonlinear phenomena exhibited by the considered systems are reported. More... »

PAGES

187-209

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1023/a:1024458814785

DOI

http://dx.doi.org/10.1023/a:1024458814785

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1020728380


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Numerical and Computational Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Automatics and Biomechanics, Technical University of Lodz, Stefanowskiego 1/15, PL-90-924, Lodz, Poland", 
          "id": "http://www.grid.ac/institutes/grid.412284.9", 
          "name": [
            "Department of Automatics and Biomechanics, Technical University of Lodz, Stefanowskiego 1/15, PL-90-924, Lodz, Poland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Awrejcewicz", 
        "givenName": "J.", 
        "id": "sg:person.012103132446.89", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012103132446.89"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Mathematics, Saratov State University, 41005, Saratov, Russia", 
          "id": "http://www.grid.ac/institutes/grid.446088.6", 
          "name": [
            "Department of Mathematics, Saratov State University, 41005, Saratov, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Krysko", 
        "givenName": "V. A.", 
        "id": "sg:person.015167266033.92", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015167266033.92"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Mathematics, Saratov State University, 41005, Saratov, Russia", 
          "id": "http://www.grid.ac/institutes/grid.446088.6", 
          "name": [
            "Department of Mathematics, Saratov State University, 41005, Saratov, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Narkaitis", 
        "givenName": "G. G.", 
        "id": "sg:person.012204360457.04", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012204360457.04"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf02748874", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004074480", 
          "https://doi.org/10.1007/bf02748874"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1011133223520", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002170452", 
          "https://doi.org/10.1023/a:1011133223520"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s000300050012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048836542", 
          "https://doi.org/10.1007/s000300050012"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-79329-5_11", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047139418", 
          "https://doi.org/10.1007/978-3-642-79329-5_11"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1008381718839", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026622104", 
          "https://doi.org/10.1023/a:1008381718839"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02730340", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031257030", 
          "https://doi.org/10.1007/bf02730340"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2003-04", 
    "datePublishedReg": "2003-04-01", 
    "description": "The complex vibrations and bifurcations of plates modeled as systemswith infinite degrees-of-freedom are considered. Both theBubnov\u2013Galerkin with high-order approximations and finite differencemethods with approximation O(h4)are applied. In addition, the calculation ofthe Lyapunov exponents of the system is performed, and the results arecompared to those derived by Bennetin's method. Some examples of newnonlinear phenomena exhibited by the considered systems are reported.", 
    "genre": "article", 
    "id": "sg:pub.10.1023/a:1024458814785", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1040905", 
        "issn": [
          "0924-090X", 
          "1573-269X"
        ], 
        "name": "Nonlinear Dynamics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "32"
      }
    ], 
    "keywords": [
      "higher-order approximations", 
      "Lyapunov exponents", 
      "infinite degrees", 
      "approximation", 
      "bifurcation", 
      "complex vibrations", 
      "exponent", 
      "system", 
      "freedom", 
      "vibration", 
      "Axially", 
      "phenomenon", 
      "results", 
      "degree", 
      "plate", 
      "addition", 
      "method", 
      "example", 
      "transversally", 
      "bifurcations of plates", 
      "systemswith infinite degrees", 
      "theBubnov\u2013Galerkin", 
      "finite differencemethods", 
      "differencemethods", 
      "calculation ofthe Lyapunov exponents", 
      "ofthe Lyapunov exponents", 
      "Bennetin's method", 
      "newnonlinear phenomena", 
      "Thin Plate-Strip Excited Transversally", 
      "Plate-Strip Excited Transversally", 
      "Excited Transversally"
    ], 
    "name": "Bifurcations of a Thin Plate-Strip Excited Transversally and Axially", 
    "pagination": "187-209", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1020728380"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1023/a:1024458814785"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1023/a:1024458814785", 
      "https://app.dimensions.ai/details/publication/pub.1020728380"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-12-01T19:14", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_366.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1023/a:1024458814785"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1023/a:1024458814785'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1023/a:1024458814785'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1023/a:1024458814785'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1023/a:1024458814785'


 

This table displays all metadata directly associated to this object as RDF triples.

130 TRIPLES      22 PREDICATES      63 URIs      49 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1023/a:1024458814785 schema:about anzsrc-for:01
2 anzsrc-for:0103
3 schema:author N8bd1e80e55444821919f3fee6ea81ad8
4 schema:citation sg:pub.10.1007/978-3-642-79329-5_11
5 sg:pub.10.1007/bf02730340
6 sg:pub.10.1007/bf02748874
7 sg:pub.10.1007/s000300050012
8 sg:pub.10.1023/a:1008381718839
9 sg:pub.10.1023/a:1011133223520
10 schema:datePublished 2003-04
11 schema:datePublishedReg 2003-04-01
12 schema:description The complex vibrations and bifurcations of plates modeled as systemswith infinite degrees-of-freedom are considered. Both theBubnov–Galerkin with high-order approximations and finite differencemethods with approximation O(h4)are applied. In addition, the calculation ofthe Lyapunov exponents of the system is performed, and the results arecompared to those derived by Bennetin's method. Some examples of newnonlinear phenomena exhibited by the considered systems are reported.
13 schema:genre article
14 schema:inLanguage en
15 schema:isAccessibleForFree false
16 schema:isPartOf N03211e1cdf954d71bf8749dc6b471f71
17 N9cecbd444c274d3e9d27e3fec32093e7
18 sg:journal.1040905
19 schema:keywords Axially
20 Bennetin's method
21 Excited Transversally
22 Lyapunov exponents
23 Plate-Strip Excited Transversally
24 Thin Plate-Strip Excited Transversally
25 addition
26 approximation
27 bifurcation
28 bifurcations of plates
29 calculation ofthe Lyapunov exponents
30 complex vibrations
31 degree
32 differencemethods
33 example
34 exponent
35 finite differencemethods
36 freedom
37 higher-order approximations
38 infinite degrees
39 method
40 newnonlinear phenomena
41 ofthe Lyapunov exponents
42 phenomenon
43 plate
44 results
45 system
46 systemswith infinite degrees
47 theBubnov–Galerkin
48 transversally
49 vibration
50 schema:name Bifurcations of a Thin Plate-Strip Excited Transversally and Axially
51 schema:pagination 187-209
52 schema:productId N0a3868159b924fd7ac81529df161c3ff
53 Ne608809afb864780b58ab1902e2a1381
54 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020728380
55 https://doi.org/10.1023/a:1024458814785
56 schema:sdDatePublished 2021-12-01T19:14
57 schema:sdLicense https://scigraph.springernature.com/explorer/license/
58 schema:sdPublisher Nc46d9a4f8c424523803ee52976fad9e9
59 schema:url https://doi.org/10.1023/a:1024458814785
60 sgo:license sg:explorer/license/
61 sgo:sdDataset articles
62 rdf:type schema:ScholarlyArticle
63 N03211e1cdf954d71bf8749dc6b471f71 schema:volumeNumber 32
64 rdf:type schema:PublicationVolume
65 N0a3868159b924fd7ac81529df161c3ff schema:name doi
66 schema:value 10.1023/a:1024458814785
67 rdf:type schema:PropertyValue
68 N4c7cfb5b91424ae7b3f6cf9b2bda350d rdf:first sg:person.015167266033.92
69 rdf:rest Nda31152d62344451bb299067f8b9ff85
70 N8bd1e80e55444821919f3fee6ea81ad8 rdf:first sg:person.012103132446.89
71 rdf:rest N4c7cfb5b91424ae7b3f6cf9b2bda350d
72 N9cecbd444c274d3e9d27e3fec32093e7 schema:issueNumber 2
73 rdf:type schema:PublicationIssue
74 Nc46d9a4f8c424523803ee52976fad9e9 schema:name Springer Nature - SN SciGraph project
75 rdf:type schema:Organization
76 Nda31152d62344451bb299067f8b9ff85 rdf:first sg:person.012204360457.04
77 rdf:rest rdf:nil
78 Ne608809afb864780b58ab1902e2a1381 schema:name dimensions_id
79 schema:value pub.1020728380
80 rdf:type schema:PropertyValue
81 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
82 schema:name Mathematical Sciences
83 rdf:type schema:DefinedTerm
84 anzsrc-for:0103 schema:inDefinedTermSet anzsrc-for:
85 schema:name Numerical and Computational Mathematics
86 rdf:type schema:DefinedTerm
87 sg:journal.1040905 schema:issn 0924-090X
88 1573-269X
89 schema:name Nonlinear Dynamics
90 schema:publisher Springer Nature
91 rdf:type schema:Periodical
92 sg:person.012103132446.89 schema:affiliation grid-institutes:grid.412284.9
93 schema:familyName Awrejcewicz
94 schema:givenName J.
95 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012103132446.89
96 rdf:type schema:Person
97 sg:person.012204360457.04 schema:affiliation grid-institutes:grid.446088.6
98 schema:familyName Narkaitis
99 schema:givenName G. G.
100 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012204360457.04
101 rdf:type schema:Person
102 sg:person.015167266033.92 schema:affiliation grid-institutes:grid.446088.6
103 schema:familyName Krysko
104 schema:givenName V. A.
105 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015167266033.92
106 rdf:type schema:Person
107 sg:pub.10.1007/978-3-642-79329-5_11 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047139418
108 https://doi.org/10.1007/978-3-642-79329-5_11
109 rdf:type schema:CreativeWork
110 sg:pub.10.1007/bf02730340 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031257030
111 https://doi.org/10.1007/bf02730340
112 rdf:type schema:CreativeWork
113 sg:pub.10.1007/bf02748874 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004074480
114 https://doi.org/10.1007/bf02748874
115 rdf:type schema:CreativeWork
116 sg:pub.10.1007/s000300050012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048836542
117 https://doi.org/10.1007/s000300050012
118 rdf:type schema:CreativeWork
119 sg:pub.10.1023/a:1008381718839 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026622104
120 https://doi.org/10.1023/a:1008381718839
121 rdf:type schema:CreativeWork
122 sg:pub.10.1023/a:1011133223520 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002170452
123 https://doi.org/10.1023/a:1011133223520
124 rdf:type schema:CreativeWork
125 grid-institutes:grid.412284.9 schema:alternateName Department of Automatics and Biomechanics, Technical University of Lodz, Stefanowskiego 1/15, PL-90-924, Lodz, Poland
126 schema:name Department of Automatics and Biomechanics, Technical University of Lodz, Stefanowskiego 1/15, PL-90-924, Lodz, Poland
127 rdf:type schema:Organization
128 grid-institutes:grid.446088.6 schema:alternateName Department of Mathematics, Saratov State University, 41005, Saratov, Russia
129 schema:name Department of Mathematics, Saratov State University, 41005, Saratov, Russia
130 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...