On Learning Gene Regulatory Networks Under the Boolean Network Model View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2003-07

AUTHORS

Harri Lähdesmäki, Ilya Shmulevich, Olli Yli-Harja

ABSTRACT

Boolean networks are a popular model class for capturing the interactions of genes and global dynamical behavior of genetic regulatory networks. Recently, a significant amount of attention has been focused on the inference or identification of the model structure from gene expression data. We consider the Consistency as well as Best-Fit Extension problems in the context of inferring the networks from data. The latter approach is especially useful in situations when gene expression measurements are noisy and may lead to inconsistent observations. We propose simple efficient algorithms that can be used to answer the Consistency Problem and find one or all consistent Boolean networks relative to the given examples. The same method is extended to learning gene regulatory networks under the Best-Fit Extension paradigm. We also introduce a simple and fast way of finding all Boolean networks having limited error size in the Best-Fit Extension Problem setting. We apply the inference methods to a real gene expression data set and present the results for a selected set of genes. More... »

PAGES

147-167

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1023/a:1023905711304

DOI

http://dx.doi.org/10.1023/a:1023905711304

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1009508577


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/17", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Psychology and Cognitive Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0806", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information Systems", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1702", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Cognitive Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institute of Signal Processing, Digital Media Institute, Tampere University of Technology, P.O. Box 553, FIN-33101, Tampere, Finland", 
          "id": "http://www.grid.ac/institutes/grid.502801.e", 
          "name": [
            "Institute of Signal Processing, Digital Media Institute, Tampere University of Technology, P.O. Box 553, FIN-33101, Tampere, Finland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "L\u00e4hdesm\u00e4ki", 
        "givenName": "Harri", 
        "id": "sg:person.01306776600.47", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01306776600.47"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Cancer Genomics Laboratory, University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Blvd., Box 85, 77030, Houston, TX, USA", 
          "id": "http://www.grid.ac/institutes/grid.240145.6", 
          "name": [
            "Cancer Genomics Laboratory, University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Blvd., Box 85, 77030, Houston, TX, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shmulevich", 
        "givenName": "Ilya", 
        "id": "sg:person.01354314446.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01354314446.15"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Signal Processing, Digital Media Institute, Tampere University of Technology, P.O. Box 553, FIN-33101, Tampere, Finland", 
          "id": "http://www.grid.ac/institutes/grid.502801.e", 
          "name": [
            "Institute of Signal Processing, Digital Media Institute, Tampere University of Technology, P.O. Box 553, FIN-33101, Tampere, Finland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yli-Harja", 
        "givenName": "Olli", 
        "id": "sg:person.01134121530.92", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01134121530.92"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/0-306-47825-0_10", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004526627", 
          "https://doi.org/10.1007/0-306-47825-0_10"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1155/s1110865701000270", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063207567", 
          "https://doi.org/10.1155/s1110865701000270"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35066056", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028177673", 
          "https://doi.org/10.1038/35066056"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s001099900023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027676634", 
          "https://doi.org/10.1007/s001099900023"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/0-306-47825-0_3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026438482", 
          "https://doi.org/10.1007/0-306-47825-0_3"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2003-07", 
    "datePublishedReg": "2003-07-01", 
    "description": "Boolean networks are a popular model class for capturing the interactions of genes and global dynamical behavior of genetic regulatory networks. Recently, a significant amount of attention has been focused on the inference or identification of the model structure from gene expression data. We consider the Consistency as well as Best-Fit Extension problems in the context of inferring the networks from data. The latter approach is especially useful in situations when gene expression measurements are noisy and may lead to inconsistent observations. We propose simple efficient algorithms that can be used to answer the Consistency Problem and find one or all consistent Boolean networks relative to the given examples. The same method is extended to learning gene regulatory networks under the Best-Fit Extension paradigm. We also introduce a simple and fast way of finding all Boolean networks having limited error size in the Best-Fit Extension Problem setting. We apply the inference methods to a real gene expression data set and present the results for a selected set of genes.", 
    "genre": "article", 
    "id": "sg:pub.10.1023/a:1023905711304", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1125588", 
        "issn": [
          "0885-6125", 
          "1573-0565"
        ], 
        "name": "Machine Learning", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1-2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "52"
      }
    ], 
    "keywords": [
      "Boolean networks", 
      "gene regulatory networks", 
      "extension problem", 
      "real gene expression data", 
      "gene expression data", 
      "Learning Gene Regulatory Networks", 
      "global dynamical behavior", 
      "genetic regulatory networks", 
      "Boolean network model", 
      "regulatory networks", 
      "simple efficient algorithm", 
      "model class", 
      "dynamical behavior", 
      "expression data", 
      "efficient algorithm", 
      "inference methods", 
      "consistency problem", 
      "network model", 
      "model structure", 
      "extension paradigm", 
      "network", 
      "fast way", 
      "gene expression measurements", 
      "error size", 
      "problem", 
      "expression measurements", 
      "latter approach", 
      "algorithm", 
      "inference", 
      "inconsistent observations", 
      "same method", 
      "paradigm", 
      "class", 
      "set", 
      "data", 
      "method", 
      "model", 
      "significant amount", 
      "approach", 
      "set of genes", 
      "example", 
      "way", 
      "consistency", 
      "context", 
      "situation", 
      "interaction of genes", 
      "attention", 
      "identification", 
      "results", 
      "amount", 
      "behavior", 
      "structure", 
      "observations", 
      "size", 
      "interaction", 
      "measurements", 
      "genes", 
      "popular model class", 
      "Fit Extension problems", 
      "consistent Boolean networks", 
      "Fit Extension paradigm", 
      "Best-Fit Extension Problem"
    ], 
    "name": "On Learning Gene Regulatory Networks Under the Boolean Network Model", 
    "pagination": "147-167", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1009508577"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1023/a:1023905711304"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1023/a:1023905711304", 
      "https://app.dimensions.ai/details/publication/pub.1009508577"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T18:13", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_366.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1023/a:1023905711304"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1023/a:1023905711304'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1023/a:1023905711304'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1023/a:1023905711304'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1023/a:1023905711304'


 

This table displays all metadata directly associated to this object as RDF triples.

169 TRIPLES      22 PREDICATES      96 URIs      80 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1023/a:1023905711304 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 anzsrc-for:0806
4 anzsrc-for:17
5 anzsrc-for:1702
6 schema:author Ndaeab4317e06401db5d4db715965a934
7 schema:citation sg:pub.10.1007/0-306-47825-0_10
8 sg:pub.10.1007/0-306-47825-0_3
9 sg:pub.10.1007/s001099900023
10 sg:pub.10.1038/35066056
11 sg:pub.10.1155/s1110865701000270
12 schema:datePublished 2003-07
13 schema:datePublishedReg 2003-07-01
14 schema:description Boolean networks are a popular model class for capturing the interactions of genes and global dynamical behavior of genetic regulatory networks. Recently, a significant amount of attention has been focused on the inference or identification of the model structure from gene expression data. We consider the Consistency as well as Best-Fit Extension problems in the context of inferring the networks from data. The latter approach is especially useful in situations when gene expression measurements are noisy and may lead to inconsistent observations. We propose simple efficient algorithms that can be used to answer the Consistency Problem and find one or all consistent Boolean networks relative to the given examples. The same method is extended to learning gene regulatory networks under the Best-Fit Extension paradigm. We also introduce a simple and fast way of finding all Boolean networks having limited error size in the Best-Fit Extension Problem setting. We apply the inference methods to a real gene expression data set and present the results for a selected set of genes.
15 schema:genre article
16 schema:inLanguage en
17 schema:isAccessibleForFree true
18 schema:isPartOf N22aa7e7555a64e508181e17a32f47078
19 Na999149612e94a26a5636958b77386c4
20 sg:journal.1125588
21 schema:keywords Best-Fit Extension Problem
22 Boolean network model
23 Boolean networks
24 Fit Extension paradigm
25 Fit Extension problems
26 Learning Gene Regulatory Networks
27 algorithm
28 amount
29 approach
30 attention
31 behavior
32 class
33 consistency
34 consistency problem
35 consistent Boolean networks
36 context
37 data
38 dynamical behavior
39 efficient algorithm
40 error size
41 example
42 expression data
43 expression measurements
44 extension paradigm
45 extension problem
46 fast way
47 gene expression data
48 gene expression measurements
49 gene regulatory networks
50 genes
51 genetic regulatory networks
52 global dynamical behavior
53 identification
54 inconsistent observations
55 inference
56 inference methods
57 interaction
58 interaction of genes
59 latter approach
60 measurements
61 method
62 model
63 model class
64 model structure
65 network
66 network model
67 observations
68 paradigm
69 popular model class
70 problem
71 real gene expression data
72 regulatory networks
73 results
74 same method
75 set
76 set of genes
77 significant amount
78 simple efficient algorithm
79 situation
80 size
81 structure
82 way
83 schema:name On Learning Gene Regulatory Networks Under the Boolean Network Model
84 schema:pagination 147-167
85 schema:productId N2368f435caaf42f89e0c553b11149fea
86 Nb0c3f8915a5e43178960a56f6a36f6cb
87 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009508577
88 https://doi.org/10.1023/a:1023905711304
89 schema:sdDatePublished 2022-01-01T18:13
90 schema:sdLicense https://scigraph.springernature.com/explorer/license/
91 schema:sdPublisher Nb4bcb88bcfed46e29ebb7ebf7e30f549
92 schema:url https://doi.org/10.1023/a:1023905711304
93 sgo:license sg:explorer/license/
94 sgo:sdDataset articles
95 rdf:type schema:ScholarlyArticle
96 N0460d4b159be449dace15ce4109a5ca7 rdf:first sg:person.01134121530.92
97 rdf:rest rdf:nil
98 N22aa7e7555a64e508181e17a32f47078 schema:issueNumber 1-2
99 rdf:type schema:PublicationIssue
100 N2368f435caaf42f89e0c553b11149fea schema:name doi
101 schema:value 10.1023/a:1023905711304
102 rdf:type schema:PropertyValue
103 N5bda7d4fe1e1446eb41de7d21d54e423 rdf:first sg:person.01354314446.15
104 rdf:rest N0460d4b159be449dace15ce4109a5ca7
105 Na999149612e94a26a5636958b77386c4 schema:volumeNumber 52
106 rdf:type schema:PublicationVolume
107 Nb0c3f8915a5e43178960a56f6a36f6cb schema:name dimensions_id
108 schema:value pub.1009508577
109 rdf:type schema:PropertyValue
110 Nb4bcb88bcfed46e29ebb7ebf7e30f549 schema:name Springer Nature - SN SciGraph project
111 rdf:type schema:Organization
112 Ndaeab4317e06401db5d4db715965a934 rdf:first sg:person.01306776600.47
113 rdf:rest N5bda7d4fe1e1446eb41de7d21d54e423
114 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
115 schema:name Information and Computing Sciences
116 rdf:type schema:DefinedTerm
117 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
118 schema:name Artificial Intelligence and Image Processing
119 rdf:type schema:DefinedTerm
120 anzsrc-for:0806 schema:inDefinedTermSet anzsrc-for:
121 schema:name Information Systems
122 rdf:type schema:DefinedTerm
123 anzsrc-for:17 schema:inDefinedTermSet anzsrc-for:
124 schema:name Psychology and Cognitive Sciences
125 rdf:type schema:DefinedTerm
126 anzsrc-for:1702 schema:inDefinedTermSet anzsrc-for:
127 schema:name Cognitive Sciences
128 rdf:type schema:DefinedTerm
129 sg:journal.1125588 schema:issn 0885-6125
130 1573-0565
131 schema:name Machine Learning
132 schema:publisher Springer Nature
133 rdf:type schema:Periodical
134 sg:person.01134121530.92 schema:affiliation grid-institutes:grid.502801.e
135 schema:familyName Yli-Harja
136 schema:givenName Olli
137 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01134121530.92
138 rdf:type schema:Person
139 sg:person.01306776600.47 schema:affiliation grid-institutes:grid.502801.e
140 schema:familyName Lähdesmäki
141 schema:givenName Harri
142 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01306776600.47
143 rdf:type schema:Person
144 sg:person.01354314446.15 schema:affiliation grid-institutes:grid.240145.6
145 schema:familyName Shmulevich
146 schema:givenName Ilya
147 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01354314446.15
148 rdf:type schema:Person
149 sg:pub.10.1007/0-306-47825-0_10 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004526627
150 https://doi.org/10.1007/0-306-47825-0_10
151 rdf:type schema:CreativeWork
152 sg:pub.10.1007/0-306-47825-0_3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026438482
153 https://doi.org/10.1007/0-306-47825-0_3
154 rdf:type schema:CreativeWork
155 sg:pub.10.1007/s001099900023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027676634
156 https://doi.org/10.1007/s001099900023
157 rdf:type schema:CreativeWork
158 sg:pub.10.1038/35066056 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028177673
159 https://doi.org/10.1038/35066056
160 rdf:type schema:CreativeWork
161 sg:pub.10.1155/s1110865701000270 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063207567
162 https://doi.org/10.1155/s1110865701000270
163 rdf:type schema:CreativeWork
164 grid-institutes:grid.240145.6 schema:alternateName Cancer Genomics Laboratory, University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Blvd., Box 85, 77030, Houston, TX, USA
165 schema:name Cancer Genomics Laboratory, University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Blvd., Box 85, 77030, Houston, TX, USA
166 rdf:type schema:Organization
167 grid-institutes:grid.502801.e schema:alternateName Institute of Signal Processing, Digital Media Institute, Tampere University of Technology, P.O. Box 553, FIN-33101, Tampere, Finland
168 schema:name Institute of Signal Processing, Digital Media Institute, Tampere University of Technology, P.O. Box 553, FIN-33101, Tampere, Finland
169 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...