Review of the High-Temperature Oxidation of Iron and Carbon Steels in Air or Oxygen View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2003-06

AUTHORS

R.Y. Chen, W.Y.D. Yeun

ABSTRACT

This paper reviews previous studies on iron and steel oxidation in oxygen or air at high temperatures. Oxidation of iron at temperatures above 700°C follows the parabolic law with the development of a three-layered hematite/magnetite/wüstite scale structure. However, at temperatures below 700°C, inconsistent results have been reported, and the scale structures are less regular, significantly affected by sample-preparation methods. Oxidation of carbon steel is generally slower than iron oxidation. For very short-time oxidation, the scale structures are similar to those formed on iron, but for longer-time oxidation, because of the less adherent nature, the scale structures developed are typically much more complex. Continuous-cooling conditions, after very short-time oxidation, favor the retention of an adherent scale, suggesting that the method proposed by Kofstad for deriving the rate constant using continuous cooling or heating-oxidation data is more appropriate for steel oxidation. Oxygen availability has certain effects on iron and steel oxidation. Under continuous cooling conditions, the final scale structure is found to be a function of the starting temperature for cooling and the cooling rate. Different scale structures develop across the width of a hot-rolled strip because of the varied oxygen availability and cooling rates at different locations. More... »

PAGES

433-468

References to SciGraph publications

  • 1970-06. Oxidation kinetics of iron-carbon base alloys in OXIDATION OF METALS
  • 2000-06. A Study of the Scale Structure of Hot-Rolled Steel Strip by Simulated Coiling and Cooling in OXIDATION OF METALS
  • 1985-12. On the formation of porosity and microchannels in growing scales in OXIDATION OF METALS
  • 2001-08. Oxide-Scale Structures Formed on Commercial Hot-Rolled Steel Strip and Their Formation Mechanisms in OXIDATION OF METALS
  • 1981-06. The growth and structure of oxide films on Fe. I. Oxidation of (001) and (112) Fe at 200–300°C in OXIDATION OF METALS
  • 1978-02. Oxidation of Fe-C alloys at 500°C in OXIDATION OF METALS
  • 1981-02. Oxidation of iron and influence of an electric field at room temperature in OXIDATION OF METALS
  • 1981-06. The growth and structure of oxide films on Fe. II. Oxidation of polycrystalline Fe at 240–320°C in OXIDATION OF METALS
  • 1975-02. The oxidation and decarburizing of Fe-C alloys in air and the influence of relative humidity in OXIDATION OF METALS
  • 2002-02. Oxidation of Low-Carbon, Low-Silicon Mild Steel at 450–900°C Under Conditions Relevant to Hot-Strip Processing in OXIDATION OF METALS
  • 1996-12. The effect of oxygen concentration on the oxidation of low-carbon steel in the temperature range 1000 to 1250°C in OXIDATION OF METALS
  • 1979-06. Oxidation of Fe-C alloys at 700°C in OXIDATION OF METALS
  • 1978-08. Study of magnetite film formation at metal-scale interface during cooling of steel products in OXIDATION OF METALS
  • 1977-08. Thickness of the oxide layers formed during the oxidation of iron in OXIDATION OF METALS
  • 1986-12. The formation of multilayer scales on pure metals in OXIDATION OF METALS
  • 1977-04. The growth and structure of oxide films formed on Fe in O2 and CO2 at 550°C in OXIDATION OF METALS
  • 1973-04. Kinetics and morphological development of the oxide scale on iron at high temperatures in oxygen at low pressure in OXIDATION OF METALS
  • 1969-03. The role of oxide plasticity on the oxidation behavior of metals: A review in OXIDATION OF METALS
  • 1981-12. Oxidation of Fe-C alloys in the temperature range 600–850°C in OXIDATION OF METALS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1023/a:1023685905159

    DOI

    http://dx.doi.org/10.1023/a:1023685905159

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1051821586


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Materials Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "BHP Steel\u2014Western Port Works, Private Bag No. 1, 3915, Hastings, Victoria, Australia", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "BHP Steel\u2014Western Port Works, Private Bag No. 1, 3915, Hastings, Victoria, Australia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Chen", 
            "givenName": "R.Y.", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "BHP Steel Research Laboratories, PO Box 202, 2505, Port Kembla, New South Wales, Australia", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "BHP Steel Research Laboratories, PO Box 202, 2505, Port Kembla, New South Wales, Australia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Yeun", 
            "givenName": "W.Y.D.", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf00611348", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008903347", 
              "https://doi.org/10.1007/bf00611348"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00603534", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019095869", 
              "https://doi.org/10.1007/bf00603534"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00659339", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039122216", 
              "https://doi.org/10.1007/bf00659339"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00612135", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009198753", 
              "https://doi.org/10.1007/bf00612135"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00603670", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028682475", 
              "https://doi.org/10.1007/bf00603670"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00603533", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036277264", 
              "https://doi.org/10.1007/bf00603533"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01048639", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028747114", 
              "https://doi.org/10.1007/bf01048639"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1013390628475", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013884709", 
              "https://doi.org/10.1023/a:1013390628475"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00609928", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031376319", 
              "https://doi.org/10.1007/bf00609928"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00614658", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025616415", 
              "https://doi.org/10.1007/bf00614658"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00609975", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024727657", 
              "https://doi.org/10.1007/bf00609975"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00613495", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024288059", 
              "https://doi.org/10.1007/bf00613495"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00603758", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014382645", 
              "https://doi.org/10.1007/bf00603758"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00657061", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041400507", 
              "https://doi.org/10.1007/bf00657061"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00603577", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011205139", 
              "https://doi.org/10.1007/bf00603577"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1010395419981", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014442602", 
              "https://doi.org/10.1023/a:1010395419981"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00603653", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025127004", 
              "https://doi.org/10.1007/bf00603653"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1004637127231", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044005185", 
              "https://doi.org/10.1023/a:1004637127231"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00606543", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008039150", 
              "https://doi.org/10.1007/bf00606543"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2003-06", 
        "datePublishedReg": "2003-06-01", 
        "description": "This paper reviews previous studies on iron and steel oxidation in oxygen or air at high temperatures. Oxidation of iron at temperatures above 700\u00b0C follows the parabolic law with the development of a three-layered hematite/magnetite/w\u00fcstite scale structure. However, at temperatures below 700\u00b0C, inconsistent results have been reported, and the scale structures are less regular, significantly affected by sample-preparation methods. Oxidation of carbon steel is generally slower than iron oxidation. For very short-time oxidation, the scale structures are similar to those formed on iron, but for longer-time oxidation, because of the less adherent nature, the scale structures developed are typically much more complex. Continuous-cooling conditions, after very short-time oxidation, favor the retention of an adherent scale, suggesting that the method proposed by Kofstad for deriving the rate constant using continuous cooling or heating-oxidation data is more appropriate for steel oxidation. Oxygen availability has certain effects on iron and steel oxidation. Under continuous cooling conditions, the final scale structure is found to be a function of the starting temperature for cooling and the cooling rate. Different scale structures develop across the width of a hot-rolled strip because of the varied oxygen availability and cooling rates at different locations.", 
        "genre": "article", 
        "id": "sg:pub.10.1023/a:1023685905159", 
        "inLanguage": "en", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1136631", 
            "issn": [
              "0030-770X", 
              "1573-4889"
            ], 
            "name": "Oxidation of Metals", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "5-6", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "59"
          }
        ], 
        "keywords": [
          "short-time oxidation", 
          "steel oxidation", 
          "carbon steel", 
          "continuous cooling conditions", 
          "high-temperature oxidation", 
          "different scale structures", 
          "scale structure", 
          "cooling conditions", 
          "continuous cooling", 
          "long-time oxidation", 
          "cooling rate", 
          "parabolic law", 
          "steel", 
          "starting temperature", 
          "oxidation of iron", 
          "high temperature", 
          "adherent scales", 
          "cooling", 
          "temperature", 
          "adherent nature", 
          "air", 
          "sample-preparation methods", 
          "different locations", 
          "iron", 
          "structure", 
          "oxidation", 
          "iron oxidation", 
          "conditions", 
          "certain effects", 
          "oxygen", 
          "method", 
          "Kofstad", 
          "width", 
          "strips", 
          "rate", 
          "oxygen availability", 
          "law", 
          "location", 
          "results", 
          "scale", 
          "effect", 
          "retention", 
          "availability", 
          "development", 
          "nature", 
          "previous studies", 
          "data", 
          "study", 
          "function", 
          "review", 
          "inconsistent results", 
          "paper", 
          "three-layered hematite/magnetite/w\u00fcstite scale structure", 
          "hematite/magnetite/w\u00fcstite scale structure", 
          "magnetite/w\u00fcstite scale structure", 
          "w\u00fcstite scale structure", 
          "less adherent nature", 
          "Continuous-cooling conditions", 
          "heating-oxidation data", 
          "final scale structure", 
          "varied oxygen availability"
        ], 
        "name": "Review of the High-Temperature Oxidation of Iron and Carbon Steels in Air or Oxygen", 
        "pagination": "433-468", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1051821586"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1023/a:1023685905159"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1023/a:1023685905159", 
          "https://app.dimensions.ai/details/publication/pub.1051821586"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2021-12-01T19:14", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_374.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1023/a:1023685905159"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1023/a:1023685905159'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1023/a:1023685905159'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1023/a:1023685905159'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1023/a:1023685905159'


     

    This table displays all metadata directly associated to this object as RDF triples.

    202 TRIPLES      22 PREDICATES      106 URIs      79 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1023/a:1023685905159 schema:about anzsrc-for:09
    2 anzsrc-for:0912
    3 schema:author N621f3821d387409480a52cb938eb305c
    4 schema:citation sg:pub.10.1007/bf00603533
    5 sg:pub.10.1007/bf00603534
    6 sg:pub.10.1007/bf00603577
    7 sg:pub.10.1007/bf00603653
    8 sg:pub.10.1007/bf00603670
    9 sg:pub.10.1007/bf00603758
    10 sg:pub.10.1007/bf00606543
    11 sg:pub.10.1007/bf00609928
    12 sg:pub.10.1007/bf00609975
    13 sg:pub.10.1007/bf00611348
    14 sg:pub.10.1007/bf00612135
    15 sg:pub.10.1007/bf00613495
    16 sg:pub.10.1007/bf00614658
    17 sg:pub.10.1007/bf00657061
    18 sg:pub.10.1007/bf00659339
    19 sg:pub.10.1007/bf01048639
    20 sg:pub.10.1023/a:1004637127231
    21 sg:pub.10.1023/a:1010395419981
    22 sg:pub.10.1023/a:1013390628475
    23 schema:datePublished 2003-06
    24 schema:datePublishedReg 2003-06-01
    25 schema:description This paper reviews previous studies on iron and steel oxidation in oxygen or air at high temperatures. Oxidation of iron at temperatures above 700°C follows the parabolic law with the development of a three-layered hematite/magnetite/wüstite scale structure. However, at temperatures below 700°C, inconsistent results have been reported, and the scale structures are less regular, significantly affected by sample-preparation methods. Oxidation of carbon steel is generally slower than iron oxidation. For very short-time oxidation, the scale structures are similar to those formed on iron, but for longer-time oxidation, because of the less adherent nature, the scale structures developed are typically much more complex. Continuous-cooling conditions, after very short-time oxidation, favor the retention of an adherent scale, suggesting that the method proposed by Kofstad for deriving the rate constant using continuous cooling or heating-oxidation data is more appropriate for steel oxidation. Oxygen availability has certain effects on iron and steel oxidation. Under continuous cooling conditions, the final scale structure is found to be a function of the starting temperature for cooling and the cooling rate. Different scale structures develop across the width of a hot-rolled strip because of the varied oxygen availability and cooling rates at different locations.
    26 schema:genre article
    27 schema:inLanguage en
    28 schema:isAccessibleForFree false
    29 schema:isPartOf N12f362fb42954f3ea6e1e8faa442ca0d
    30 Nab1fc9651cc84a94a9824f1c1016c455
    31 sg:journal.1136631
    32 schema:keywords Continuous-cooling conditions
    33 Kofstad
    34 adherent nature
    35 adherent scales
    36 air
    37 availability
    38 carbon steel
    39 certain effects
    40 conditions
    41 continuous cooling
    42 continuous cooling conditions
    43 cooling
    44 cooling conditions
    45 cooling rate
    46 data
    47 development
    48 different locations
    49 different scale structures
    50 effect
    51 final scale structure
    52 function
    53 heating-oxidation data
    54 hematite/magnetite/wüstite scale structure
    55 high temperature
    56 high-temperature oxidation
    57 inconsistent results
    58 iron
    59 iron oxidation
    60 law
    61 less adherent nature
    62 location
    63 long-time oxidation
    64 magnetite/wüstite scale structure
    65 method
    66 nature
    67 oxidation
    68 oxidation of iron
    69 oxygen
    70 oxygen availability
    71 paper
    72 parabolic law
    73 previous studies
    74 rate
    75 results
    76 retention
    77 review
    78 sample-preparation methods
    79 scale
    80 scale structure
    81 short-time oxidation
    82 starting temperature
    83 steel
    84 steel oxidation
    85 strips
    86 structure
    87 study
    88 temperature
    89 three-layered hematite/magnetite/wüstite scale structure
    90 varied oxygen availability
    91 width
    92 wüstite scale structure
    93 schema:name Review of the High-Temperature Oxidation of Iron and Carbon Steels in Air or Oxygen
    94 schema:pagination 433-468
    95 schema:productId N9d7674a88793444a86b78b6fbcd7d8d1
    96 Nf12e917c44d7405d90bb5ab57b8ad439
    97 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051821586
    98 https://doi.org/10.1023/a:1023685905159
    99 schema:sdDatePublished 2021-12-01T19:14
    100 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    101 schema:sdPublisher N3daa8aa443c0424c9b0b6f76a7399bf4
    102 schema:url https://doi.org/10.1023/a:1023685905159
    103 sgo:license sg:explorer/license/
    104 sgo:sdDataset articles
    105 rdf:type schema:ScholarlyArticle
    106 N12f362fb42954f3ea6e1e8faa442ca0d schema:issueNumber 5-6
    107 rdf:type schema:PublicationIssue
    108 N35ebe31bda0c4b3fabab95dfa3d9d273 schema:affiliation grid-institutes:None
    109 schema:familyName Yeun
    110 schema:givenName W.Y.D.
    111 rdf:type schema:Person
    112 N3daa8aa443c0424c9b0b6f76a7399bf4 schema:name Springer Nature - SN SciGraph project
    113 rdf:type schema:Organization
    114 N621f3821d387409480a52cb938eb305c rdf:first Ndbe084b5d9244c2094b670a4826560de
    115 rdf:rest Nf83c6facf9c7480ba710102af6b2ca7f
    116 N9d7674a88793444a86b78b6fbcd7d8d1 schema:name doi
    117 schema:value 10.1023/a:1023685905159
    118 rdf:type schema:PropertyValue
    119 Nab1fc9651cc84a94a9824f1c1016c455 schema:volumeNumber 59
    120 rdf:type schema:PublicationVolume
    121 Ndbe084b5d9244c2094b670a4826560de schema:affiliation grid-institutes:None
    122 schema:familyName Chen
    123 schema:givenName R.Y.
    124 rdf:type schema:Person
    125 Nf12e917c44d7405d90bb5ab57b8ad439 schema:name dimensions_id
    126 schema:value pub.1051821586
    127 rdf:type schema:PropertyValue
    128 Nf83c6facf9c7480ba710102af6b2ca7f rdf:first N35ebe31bda0c4b3fabab95dfa3d9d273
    129 rdf:rest rdf:nil
    130 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    131 schema:name Engineering
    132 rdf:type schema:DefinedTerm
    133 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
    134 schema:name Materials Engineering
    135 rdf:type schema:DefinedTerm
    136 sg:journal.1136631 schema:issn 0030-770X
    137 1573-4889
    138 schema:name Oxidation of Metals
    139 schema:publisher Springer Nature
    140 rdf:type schema:Periodical
    141 sg:pub.10.1007/bf00603533 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036277264
    142 https://doi.org/10.1007/bf00603533
    143 rdf:type schema:CreativeWork
    144 sg:pub.10.1007/bf00603534 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019095869
    145 https://doi.org/10.1007/bf00603534
    146 rdf:type schema:CreativeWork
    147 sg:pub.10.1007/bf00603577 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011205139
    148 https://doi.org/10.1007/bf00603577
    149 rdf:type schema:CreativeWork
    150 sg:pub.10.1007/bf00603653 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025127004
    151 https://doi.org/10.1007/bf00603653
    152 rdf:type schema:CreativeWork
    153 sg:pub.10.1007/bf00603670 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028682475
    154 https://doi.org/10.1007/bf00603670
    155 rdf:type schema:CreativeWork
    156 sg:pub.10.1007/bf00603758 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014382645
    157 https://doi.org/10.1007/bf00603758
    158 rdf:type schema:CreativeWork
    159 sg:pub.10.1007/bf00606543 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008039150
    160 https://doi.org/10.1007/bf00606543
    161 rdf:type schema:CreativeWork
    162 sg:pub.10.1007/bf00609928 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031376319
    163 https://doi.org/10.1007/bf00609928
    164 rdf:type schema:CreativeWork
    165 sg:pub.10.1007/bf00609975 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024727657
    166 https://doi.org/10.1007/bf00609975
    167 rdf:type schema:CreativeWork
    168 sg:pub.10.1007/bf00611348 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008903347
    169 https://doi.org/10.1007/bf00611348
    170 rdf:type schema:CreativeWork
    171 sg:pub.10.1007/bf00612135 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009198753
    172 https://doi.org/10.1007/bf00612135
    173 rdf:type schema:CreativeWork
    174 sg:pub.10.1007/bf00613495 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024288059
    175 https://doi.org/10.1007/bf00613495
    176 rdf:type schema:CreativeWork
    177 sg:pub.10.1007/bf00614658 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025616415
    178 https://doi.org/10.1007/bf00614658
    179 rdf:type schema:CreativeWork
    180 sg:pub.10.1007/bf00657061 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041400507
    181 https://doi.org/10.1007/bf00657061
    182 rdf:type schema:CreativeWork
    183 sg:pub.10.1007/bf00659339 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039122216
    184 https://doi.org/10.1007/bf00659339
    185 rdf:type schema:CreativeWork
    186 sg:pub.10.1007/bf01048639 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028747114
    187 https://doi.org/10.1007/bf01048639
    188 rdf:type schema:CreativeWork
    189 sg:pub.10.1023/a:1004637127231 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044005185
    190 https://doi.org/10.1023/a:1004637127231
    191 rdf:type schema:CreativeWork
    192 sg:pub.10.1023/a:1010395419981 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014442602
    193 https://doi.org/10.1023/a:1010395419981
    194 rdf:type schema:CreativeWork
    195 sg:pub.10.1023/a:1013390628475 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013884709
    196 https://doi.org/10.1023/a:1013390628475
    197 rdf:type schema:CreativeWork
    198 grid-institutes:None schema:alternateName BHP Steel Research Laboratories, PO Box 202, 2505, Port Kembla, New South Wales, Australia
    199 BHP Steel—Western Port Works, Private Bag No. 1, 3915, Hastings, Victoria, Australia
    200 schema:name BHP Steel Research Laboratories, PO Box 202, 2505, Port Kembla, New South Wales, Australia
    201 BHP Steel—Western Port Works, Private Bag No. 1, 3915, Hastings, Victoria, Australia
    202 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...