Charge Transfer at the Mn Acceptor Level in GaN View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2003-02

AUTHORS

T. Graf, M. Gjukic, L. Görgens, O. Ambacher, M. S. Brandt, M. Stutzmann

ABSTRACT

MBE-grown GaN : Mn layers with Mn doping concentrations around 1020 cm−3 were investigated by photoconductivity measurements. From electron spin resonance (ESR), Mn is known to be mostly present in the neutral Mn3+ or Mn2+ + h+ state, which leads to a reassignment of the known optical absorption features to charge transfer from Mn3+, either by direct photoionization at about 1.8 eV or by a photothermal ionization process via an excited state (Mn3+)* at 1.42 V higher internal energy than the Mn3+ ground state. It is proposed that the Mn3+/Mn2+ acceptor level is located about 1.8 eV above the valence band edge of GaN so that the nature of the acceptor wavefunction is very different from an effective-mass-like state such as the Mn2+ + h+ complex in GaAs : Mn. According to these experimental results, the realization of carrier-mediated ferromagnetism becomes rather unlikely in not co-doped GaN : Mn. More... »

PAGES

83-86

Identifiers

URI

http://scigraph.springernature.com/pub.10.1023/a:1023288718903

DOI

http://dx.doi.org/10.1023/a:1023288718903

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1001371611


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Technical University Munich", 
          "id": "https://www.grid.ac/institutes/grid.6936.a", 
          "name": [
            "Walter Schottky Institut, Technische Universit\u00e4t M\u00fcnchen, D 85748, Garching, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Graf", 
        "givenName": "T.", 
        "id": "sg:person.016521327013.74", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016521327013.74"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Technical University Munich", 
          "id": "https://www.grid.ac/institutes/grid.6936.a", 
          "name": [
            "Walter Schottky Institut, Technische Universit\u00e4t M\u00fcnchen, D 85748, Garching, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gjukic", 
        "givenName": "M.", 
        "id": "sg:person.015341352073.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015341352073.41"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Technical University Munich", 
          "id": "https://www.grid.ac/institutes/grid.6936.a", 
          "name": [
            "Physik-Department E12, Technische Universit\u00e4t M\u00fcnchen, D 85748, Garching, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "G\u00f6rgens", 
        "givenName": "L.", 
        "id": "sg:person.014207640027.45", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014207640027.45"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ilmenau University of Technology", 
          "id": "https://www.grid.ac/institutes/grid.6553.5", 
          "name": [
            "Center for Micro- and Nanotechnologies, Technische Universit\u00e4t Ilmenau, D 98684, Ilmenau, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ambacher", 
        "givenName": "O.", 
        "id": "sg:person.01352162115.95", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01352162115.95"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Technical University Munich", 
          "id": "https://www.grid.ac/institutes/grid.6936.a", 
          "name": [
            "Walter Schottky Institut, Technische Universit\u00e4t M\u00fcnchen, D 85748, Garching, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Brandt", 
        "givenName": "M. S.", 
        "id": "sg:person.010103765142.67", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010103765142.67"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Technical University Munich", 
          "id": "https://www.grid.ac/institutes/grid.6936.a", 
          "name": [
            "Walter Schottky Institut, Technische Universit\u00e4t M\u00fcnchen, D 85748, Garching, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Stutzmann", 
        "givenName": "M.", 
        "id": "sg:person.013757077235.59", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013757077235.59"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1088/0268-1242/11/12/013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013544927"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0925-8388(00)00794-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017021051"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0921-4526(01)00654-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028744211"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0034-4885/49/7/002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033075741"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0921-4526(01)00660-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051280163"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1378800", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057700739"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1456544", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057708553"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.366309", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057994650"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.54.10508", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060581208"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.54.10508", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060581208"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.63.233205", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060599895"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.63.233205", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060599895"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.59.240", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060795932"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.59.240", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060795932"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.287.5455.1019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062568262"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2003-02", 
    "datePublishedReg": "2003-02-01", 
    "description": "MBE-grown GaN : Mn layers with Mn doping concentrations around 1020 cm\u22123 were investigated by photoconductivity measurements. From electron spin resonance (ESR), Mn is known to be mostly present in the neutral Mn3+ or Mn2+ + h+ state, which leads to a reassignment of the known optical absorption features to charge transfer from Mn3+, either by direct photoionization at about 1.8 eV or by a photothermal ionization process via an excited state (Mn3+)* at 1.42 V higher internal energy than the Mn3+ ground state. It is proposed that the Mn3+/Mn2+ acceptor level is located about 1.8 eV above the valence band edge of GaN so that the nature of the acceptor wavefunction is very different from an effective-mass-like state such as the Mn2+ + h+ complex in GaAs : Mn. According to these experimental results, the realization of carrier-mediated ferromagnetism becomes rather unlikely in not co-doped GaN : Mn.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1023/a:1023288718903", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1137849", 
        "issn": [
          "0896-1107", 
          "1572-9605"
        ], 
        "name": "Journal of Superconductivity", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "16"
      }
    ], 
    "name": "Charge Transfer at the Mn Acceptor Level in GaN", 
    "pagination": "83-86", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "068883aafd4023a715cfff64d9591ccd4ca0aac33d275f9f283d2b92ec0df56f"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1023/a:1023288718903"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1001371611"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1023/a:1023288718903", 
      "https://app.dimensions.ai/details/publication/pub.1001371611"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T18:18", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8675_00000502.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1023%2FA%3A1023288718903"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1023/a:1023288718903'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1023/a:1023288718903'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1023/a:1023288718903'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1023/a:1023288718903'


 

This table displays all metadata directly associated to this object as RDF triples.

136 TRIPLES      21 PREDICATES      39 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1023/a:1023288718903 schema:about anzsrc-for:03
2 anzsrc-for:0306
3 schema:author N71457ffd937e4863a7409115a0ffc654
4 schema:citation https://doi.org/10.1016/s0921-4526(01)00654-8
5 https://doi.org/10.1016/s0921-4526(01)00660-3
6 https://doi.org/10.1016/s0925-8388(00)00794-5
7 https://doi.org/10.1063/1.1378800
8 https://doi.org/10.1063/1.1456544
9 https://doi.org/10.1063/1.366309
10 https://doi.org/10.1088/0034-4885/49/7/002
11 https://doi.org/10.1088/0268-1242/11/12/013
12 https://doi.org/10.1103/physrevb.54.10508
13 https://doi.org/10.1103/physrevb.63.233205
14 https://doi.org/10.1103/physrevlett.59.240
15 https://doi.org/10.1126/science.287.5455.1019
16 schema:datePublished 2003-02
17 schema:datePublishedReg 2003-02-01
18 schema:description MBE-grown GaN : Mn layers with Mn doping concentrations around 1020 cm−3 were investigated by photoconductivity measurements. From electron spin resonance (ESR), Mn is known to be mostly present in the neutral Mn3+ or Mn2+ + h+ state, which leads to a reassignment of the known optical absorption features to charge transfer from Mn3+, either by direct photoionization at about 1.8 eV or by a photothermal ionization process via an excited state (Mn3+)* at 1.42 V higher internal energy than the Mn3+ ground state. It is proposed that the Mn3+/Mn2+ acceptor level is located about 1.8 eV above the valence band edge of GaN so that the nature of the acceptor wavefunction is very different from an effective-mass-like state such as the Mn2+ + h+ complex in GaAs : Mn. According to these experimental results, the realization of carrier-mediated ferromagnetism becomes rather unlikely in not co-doped GaN : Mn.
19 schema:genre research_article
20 schema:inLanguage en
21 schema:isAccessibleForFree false
22 schema:isPartOf N49196d9aee234eab8088401f866ee3c5
23 Nf3fc58ab426840dea9c6ae2069f6c845
24 sg:journal.1137849
25 schema:name Charge Transfer at the Mn Acceptor Level in GaN
26 schema:pagination 83-86
27 schema:productId N563ffa7567ea4280bafb0e1fab837888
28 Ncc584e571ad846de9527f60f7ce97f0f
29 Ne4d014f0c3a74f8ebffaf8fb3bf7a75d
30 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001371611
31 https://doi.org/10.1023/a:1023288718903
32 schema:sdDatePublished 2019-04-10T18:18
33 schema:sdLicense https://scigraph.springernature.com/explorer/license/
34 schema:sdPublisher N56fc5b58a4544504b2e35bacfe72a131
35 schema:url http://link.springer.com/10.1023%2FA%3A1023288718903
36 sgo:license sg:explorer/license/
37 sgo:sdDataset articles
38 rdf:type schema:ScholarlyArticle
39 N49196d9aee234eab8088401f866ee3c5 schema:issueNumber 1
40 rdf:type schema:PublicationIssue
41 N563ffa7567ea4280bafb0e1fab837888 schema:name doi
42 schema:value 10.1023/a:1023288718903
43 rdf:type schema:PropertyValue
44 N56fc5b58a4544504b2e35bacfe72a131 schema:name Springer Nature - SN SciGraph project
45 rdf:type schema:Organization
46 N71457ffd937e4863a7409115a0ffc654 rdf:first sg:person.016521327013.74
47 rdf:rest N8787eac700d84d8e942603957a0aa45a
48 N876f4984ab284372ad7b6f49bd5a9119 rdf:first sg:person.010103765142.67
49 rdf:rest Nddd61953566e4da9af0343e37bec9369
50 N8787eac700d84d8e942603957a0aa45a rdf:first sg:person.015341352073.41
51 rdf:rest Nab3cbc3b15fa44d99b1c0e840f1f2460
52 N9083fcc00e9645eb932319f884dfc13c rdf:first sg:person.01352162115.95
53 rdf:rest N876f4984ab284372ad7b6f49bd5a9119
54 Nab3cbc3b15fa44d99b1c0e840f1f2460 rdf:first sg:person.014207640027.45
55 rdf:rest N9083fcc00e9645eb932319f884dfc13c
56 Ncc584e571ad846de9527f60f7ce97f0f schema:name dimensions_id
57 schema:value pub.1001371611
58 rdf:type schema:PropertyValue
59 Nddd61953566e4da9af0343e37bec9369 rdf:first sg:person.013757077235.59
60 rdf:rest rdf:nil
61 Ne4d014f0c3a74f8ebffaf8fb3bf7a75d schema:name readcube_id
62 schema:value 068883aafd4023a715cfff64d9591ccd4ca0aac33d275f9f283d2b92ec0df56f
63 rdf:type schema:PropertyValue
64 Nf3fc58ab426840dea9c6ae2069f6c845 schema:volumeNumber 16
65 rdf:type schema:PublicationVolume
66 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
67 schema:name Chemical Sciences
68 rdf:type schema:DefinedTerm
69 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
70 schema:name Physical Chemistry (incl. Structural)
71 rdf:type schema:DefinedTerm
72 sg:journal.1137849 schema:issn 0896-1107
73 1572-9605
74 schema:name Journal of Superconductivity
75 rdf:type schema:Periodical
76 sg:person.010103765142.67 schema:affiliation https://www.grid.ac/institutes/grid.6936.a
77 schema:familyName Brandt
78 schema:givenName M. S.
79 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010103765142.67
80 rdf:type schema:Person
81 sg:person.01352162115.95 schema:affiliation https://www.grid.ac/institutes/grid.6553.5
82 schema:familyName Ambacher
83 schema:givenName O.
84 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01352162115.95
85 rdf:type schema:Person
86 sg:person.013757077235.59 schema:affiliation https://www.grid.ac/institutes/grid.6936.a
87 schema:familyName Stutzmann
88 schema:givenName M.
89 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013757077235.59
90 rdf:type schema:Person
91 sg:person.014207640027.45 schema:affiliation https://www.grid.ac/institutes/grid.6936.a
92 schema:familyName Görgens
93 schema:givenName L.
94 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014207640027.45
95 rdf:type schema:Person
96 sg:person.015341352073.41 schema:affiliation https://www.grid.ac/institutes/grid.6936.a
97 schema:familyName Gjukic
98 schema:givenName M.
99 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015341352073.41
100 rdf:type schema:Person
101 sg:person.016521327013.74 schema:affiliation https://www.grid.ac/institutes/grid.6936.a
102 schema:familyName Graf
103 schema:givenName T.
104 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016521327013.74
105 rdf:type schema:Person
106 https://doi.org/10.1016/s0921-4526(01)00654-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028744211
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1016/s0921-4526(01)00660-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051280163
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1016/s0925-8388(00)00794-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017021051
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1063/1.1378800 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057700739
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1063/1.1456544 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057708553
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1063/1.366309 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057994650
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1088/0034-4885/49/7/002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033075741
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1088/0268-1242/11/12/013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013544927
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1103/physrevb.54.10508 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060581208
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1103/physrevb.63.233205 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060599895
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1103/physrevlett.59.240 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060795932
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1126/science.287.5455.1019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062568262
129 rdf:type schema:CreativeWork
130 https://www.grid.ac/institutes/grid.6553.5 schema:alternateName Ilmenau University of Technology
131 schema:name Center for Micro- and Nanotechnologies, Technische Universität Ilmenau, D 98684, Ilmenau, Germany
132 rdf:type schema:Organization
133 https://www.grid.ac/institutes/grid.6936.a schema:alternateName Technical University Munich
134 schema:name Physik-Department E12, Technische Universität München, D 85748, Garching, Germany
135 Walter Schottky Institut, Technische Universität München, D 85748, Garching, Germany
136 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...