On the Global Stability of Solutions of Moment Systems in Nonequilibrium Thermodynamics View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2003-03

AUTHORS

E. V. Radkevich

ABSTRACT

In this paper, we study the linearization of the Cauchy problem and the mixed problem for the system of Grad--Hermite moments in nonequilibrium thermodynamics in the neighborhood of the equilibrium state. Stability conditions for solutions of the Cauchy problem are proved as a generalization of the classical Hermite--Biller theorem on stable polynomials. For the mixed problem, we prove an analog of the Vishik--Lyusternik theorem on small singular perturbations of general elliptic problems. The last observation allows us to introduce the Shapiro--Lopatinskii condition, which implies the well-posedness of the mixed problem. More... »

PAGES

551-561

References to SciGraph publications

  • 2000-04. Temperature jump and velocity slip in the moment method in CONTINUUM MECHANICS AND THERMODYNAMICS
  • 1998-12. Domain of Definition of Levermore's Five-Moment System in JOURNAL OF STATISTICAL PHYSICS
  • Journal

    TITLE

    Mathematical Notes

    ISSUE

    3-4

    VOLUME

    73

    Author Affiliations

    Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1023/a:1023215422695

    DOI

    http://dx.doi.org/10.1023/a:1023215422695

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1014219149


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Moscow State University", 
              "id": "https://www.grid.ac/institutes/grid.14476.30", 
              "name": [
                "M. V. Lomonosov Moscow State University, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Radkevich", 
            "givenName": "E. V.", 
            "id": "sg:person.010212007350.31", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010212007350.31"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1002/cpa.3160100406", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041027283"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/cpa.3160100406", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041027283"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/b:joss.0000033155.07331.d9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048208765", 
              "https://doi.org/10.1023/b:joss.0000033155.07331.d9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/cpa.3160020403", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049725519"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s001610050119", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050730214", 
              "https://doi.org/10.1007/s001610050119"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s001610050119", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050730214", 
              "https://doi.org/10.1007/s001610050119"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1070/rm1960v015n04abeh004096", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058193658"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2003-03", 
        "datePublishedReg": "2003-03-01", 
        "description": "In this paper, we study the linearization of the Cauchy problem and the mixed problem for the system of Grad--Hermite moments in nonequilibrium thermodynamics in the neighborhood of the equilibrium state. Stability conditions for solutions of the Cauchy problem are proved as a generalization of the classical Hermite--Biller theorem on stable polynomials. For the mixed problem, we prove an analog of the Vishik--Lyusternik theorem on small singular perturbations of general elliptic problems. The last observation allows us to introduce the Shapiro--Lopatinskii condition, which implies the well-posedness of the mixed problem.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1023/a:1023215422695", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1136530", 
            "issn": [
              "1757-7489", 
              "1573-8876"
            ], 
            "name": "Mathematical Notes", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "3-4", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "73"
          }
        ], 
        "name": "On the Global Stability of Solutions of Moment Systems in Nonequilibrium Thermodynamics", 
        "pagination": "551-561", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "43bdbc54d8b8eb07d1ed0fcc830b456e2ca092b3a3a4cee507212e96d1990d54"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1023/a:1023215422695"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1014219149"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1023/a:1023215422695", 
          "https://app.dimensions.ai/details/publication/pub.1014219149"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T14:59", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8663_00000504.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1023%2FA%3A1023215422695"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1023/a:1023215422695'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1023/a:1023215422695'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1023/a:1023215422695'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1023/a:1023215422695'


     

    This table displays all metadata directly associated to this object as RDF triples.

    78 TRIPLES      21 PREDICATES      32 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1023/a:1023215422695 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author N46c0fdcd43ed4296b7b3a8ace7fa51e9
    4 schema:citation sg:pub.10.1007/s001610050119
    5 sg:pub.10.1023/b:joss.0000033155.07331.d9
    6 https://doi.org/10.1002/cpa.3160020403
    7 https://doi.org/10.1002/cpa.3160100406
    8 https://doi.org/10.1070/rm1960v015n04abeh004096
    9 schema:datePublished 2003-03
    10 schema:datePublishedReg 2003-03-01
    11 schema:description In this paper, we study the linearization of the Cauchy problem and the mixed problem for the system of Grad--Hermite moments in nonequilibrium thermodynamics in the neighborhood of the equilibrium state. Stability conditions for solutions of the Cauchy problem are proved as a generalization of the classical Hermite--Biller theorem on stable polynomials. For the mixed problem, we prove an analog of the Vishik--Lyusternik theorem on small singular perturbations of general elliptic problems. The last observation allows us to introduce the Shapiro--Lopatinskii condition, which implies the well-posedness of the mixed problem.
    12 schema:genre research_article
    13 schema:inLanguage en
    14 schema:isAccessibleForFree false
    15 schema:isPartOf N9a8c408bbe544dcf8a504b208e227d17
    16 Nb363b7c8e22e4d62b331134abd313ffb
    17 sg:journal.1136530
    18 schema:name On the Global Stability of Solutions of Moment Systems in Nonequilibrium Thermodynamics
    19 schema:pagination 551-561
    20 schema:productId N59141762e5b8480fa58831f45769826b
    21 Nb3394b686bf24b35b1e75bc7f0f7e9a5
    22 Nf4a27c87ff4046f793b00459b3742249
    23 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014219149
    24 https://doi.org/10.1023/a:1023215422695
    25 schema:sdDatePublished 2019-04-10T14:59
    26 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    27 schema:sdPublisher N0b8b8332e2eb455dadd7ed6fefe0f816
    28 schema:url http://link.springer.com/10.1023%2FA%3A1023215422695
    29 sgo:license sg:explorer/license/
    30 sgo:sdDataset articles
    31 rdf:type schema:ScholarlyArticle
    32 N0b8b8332e2eb455dadd7ed6fefe0f816 schema:name Springer Nature - SN SciGraph project
    33 rdf:type schema:Organization
    34 N46c0fdcd43ed4296b7b3a8ace7fa51e9 rdf:first sg:person.010212007350.31
    35 rdf:rest rdf:nil
    36 N59141762e5b8480fa58831f45769826b schema:name doi
    37 schema:value 10.1023/a:1023215422695
    38 rdf:type schema:PropertyValue
    39 N9a8c408bbe544dcf8a504b208e227d17 schema:volumeNumber 73
    40 rdf:type schema:PublicationVolume
    41 Nb3394b686bf24b35b1e75bc7f0f7e9a5 schema:name dimensions_id
    42 schema:value pub.1014219149
    43 rdf:type schema:PropertyValue
    44 Nb363b7c8e22e4d62b331134abd313ffb schema:issueNumber 3-4
    45 rdf:type schema:PublicationIssue
    46 Nf4a27c87ff4046f793b00459b3742249 schema:name readcube_id
    47 schema:value 43bdbc54d8b8eb07d1ed0fcc830b456e2ca092b3a3a4cee507212e96d1990d54
    48 rdf:type schema:PropertyValue
    49 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    50 schema:name Mathematical Sciences
    51 rdf:type schema:DefinedTerm
    52 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    53 schema:name Pure Mathematics
    54 rdf:type schema:DefinedTerm
    55 sg:journal.1136530 schema:issn 1573-8876
    56 1757-7489
    57 schema:name Mathematical Notes
    58 rdf:type schema:Periodical
    59 sg:person.010212007350.31 schema:affiliation https://www.grid.ac/institutes/grid.14476.30
    60 schema:familyName Radkevich
    61 schema:givenName E. V.
    62 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010212007350.31
    63 rdf:type schema:Person
    64 sg:pub.10.1007/s001610050119 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050730214
    65 https://doi.org/10.1007/s001610050119
    66 rdf:type schema:CreativeWork
    67 sg:pub.10.1023/b:joss.0000033155.07331.d9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048208765
    68 https://doi.org/10.1023/b:joss.0000033155.07331.d9
    69 rdf:type schema:CreativeWork
    70 https://doi.org/10.1002/cpa.3160020403 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049725519
    71 rdf:type schema:CreativeWork
    72 https://doi.org/10.1002/cpa.3160100406 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041027283
    73 rdf:type schema:CreativeWork
    74 https://doi.org/10.1070/rm1960v015n04abeh004096 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058193658
    75 rdf:type schema:CreativeWork
    76 https://www.grid.ac/institutes/grid.14476.30 schema:alternateName Moscow State University
    77 schema:name M. V. Lomonosov Moscow State University, Russia
    78 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...