Efficient computation of location depth contours by methods of computational geometry View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2003-04

AUTHORS

Kim Miller, Suneeta Ramaswami, Peter Rousseeuw, J. Antoni Sellarès, Diane Souvaine, Ileana Streinu, Anja Struyf

ABSTRACT

The concept of location depth was introduced as a way to extend the univariate notion of ranking to a bivariate configuration of data points. It has been used successfully for robust estimation, hypothesis testing, and graphical display. The depth contours form a collection of nested polygons, and the center of the deepest contour is called the Tukey median. The only available implemented algorithms for the depth contours and the Tukey median are slow, which limits their usefulness. In this paper we describe an optimal algorithm which computes all bivariate depth contours in O(n2) time and space, using topological sweep of the dual arrangement of lines. Once these contours are known, the location depth of any point can be computed in O(log2n) time with no additional preprocessing or in O(log n) time after O(n2) preprocessing. We provide fast implementations of these algorithms to allow their use in everyday statistical practice. More... »

PAGES

153-162

Identifiers

URI

http://scigraph.springernature.com/pub.10.1023/a:1023208625954

DOI

http://dx.doi.org/10.1023/a:1023208625954

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1024351010


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Tufts University", 
          "id": "https://www.grid.ac/institutes/grid.429997.8", 
          "name": [
            "Department of Electrical Engineering and Computer Science, Tufts University, 02155, Medford, MA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Miller", 
        "givenName": "Kim", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Rutgers University", 
          "id": "https://www.grid.ac/institutes/grid.430387.b", 
          "name": [
            "Department of Computer Science, Rutgers University, 08102, Camden, NJ"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ramaswami", 
        "givenName": "Suneeta", 
        "id": "sg:person.011667706746.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011667706746.30"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Antwerp", 
          "id": "https://www.grid.ac/institutes/grid.5284.b", 
          "name": [
            "Department of Mathematics and Computer Science, University of Antwerp, Middelheimlaan 1, B-2020, Antwerp, Belgium"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rousseeuw", 
        "givenName": "Peter", 
        "id": "sg:person.0775337371.63", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0775337371.63"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Girona", 
          "id": "https://www.grid.ac/institutes/grid.5319.e", 
          "name": [
            "Institut d'Inform\u00e0tica i Aplicacions, Universitat de Girona, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sellar\u00e8s", 
        "givenName": "J. Antoni", 
        "id": "sg:person.010430400733.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010430400733.16"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Smith College", 
          "id": "https://www.grid.ac/institutes/grid.263724.6", 
          "name": [
            "Department of Computer Science, Smith College, 01063, Northampton, MA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Souvaine", 
        "givenName": "Diane", 
        "id": "sg:person.01310301314.56", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01310301314.56"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Smith College", 
          "id": "https://www.grid.ac/institutes/grid.263724.6", 
          "name": [
            "Department of Computer Science, Smith College, 01063, Northampton, MA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Streinu", 
        "givenName": "Ileana", 
        "id": "sg:person.01240505005.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01240505005.22"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Antwerp", 
          "id": "https://www.grid.ac/institutes/grid.5284.b", 
          "name": [
            "Department of Mathematics and Computer Science, University of Antwerp, Middelheimlaan 1, B-2020, Antwerp, Belgium"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Struyf", 
        "givenName": "Anja", 
        "id": "sg:person.01057276224.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01057276224.31"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/0022-0000(89)90038-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014418612"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/3-540-45643-0_12", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023247090", 
          "https://doi.org/10.1007/3-540-45643-0_12"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/3-540-45643-0_12", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023247090", 
          "https://doi.org/10.1007/3-540-45643-0_12"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1008945009397", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024868624", 
          "https://doi.org/10.1023/a:1008945009397"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/pl00009354", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027985175", 
          "https://doi.org/10.1007/pl00009354"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/pl00009354", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027985175", 
          "https://doi.org/10.1007/pl00009354"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0167-9473(96)00027-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034778667"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/6138.6151", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037924809"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01621459.1984.10477105", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058302950"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01621459.1987.10478500", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058303477"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01621459.1990.10475313", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058303948"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/0212002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062841682"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/0215023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062841885"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/0216005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062841951"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/aoms/1177728498", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064401417"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/aos/1017939144", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064405960"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/aos/1018031260", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064406019"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/aos/1176347507", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064408383"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/aos/1176348890", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064408724"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2291471", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069864152"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2986073", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101983592"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2986073", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101983592"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2003-04", 
    "datePublishedReg": "2003-04-01", 
    "description": "The concept of location depth was introduced as a way to extend the univariate notion of ranking to a bivariate configuration of data points. It has been used successfully for robust estimation, hypothesis testing, and graphical display. The depth contours form a collection of nested polygons, and the center of the deepest contour is called the Tukey median. The only available implemented algorithms for the depth contours and the Tukey median are slow, which limits their usefulness. In this paper we describe an optimal algorithm which computes all bivariate depth contours in O(n2) time and space, using topological sweep of the dual arrangement of lines. Once these contours are known, the location depth of any point can be computed in O(log2n) time with no additional preprocessing or in O(log n) time after O(n2) preprocessing. We provide fast implementations of these algorithms to allow their use in everyday statistical practice.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1023/a:1023208625954", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1327447", 
        "issn": [
          "0960-3174", 
          "1573-1375"
        ], 
        "name": "Statistics and Computing", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "13"
      }
    ], 
    "name": "Efficient computation of location depth contours by methods of computational geometry", 
    "pagination": "153-162", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "7402a4b1066c4eb2b3bb6d4c9f76df802714bfda333e38edb5f6be3cf17476c7"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1023/a:1023208625954"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1024351010"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1023/a:1023208625954", 
      "https://app.dimensions.ai/details/publication/pub.1024351010"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T17:26", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8672_00000488.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1023/A:1023208625954"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1023/a:1023208625954'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1023/a:1023208625954'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1023/a:1023208625954'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1023/a:1023208625954'


 

This table displays all metadata directly associated to this object as RDF triples.

174 TRIPLES      21 PREDICATES      46 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1023/a:1023208625954 schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author N85564e63f1f44948adbd31025cacc876
4 schema:citation sg:pub.10.1007/3-540-45643-0_12
5 sg:pub.10.1007/pl00009354
6 sg:pub.10.1023/a:1008945009397
7 https://doi.org/10.1016/0022-0000(89)90038-x
8 https://doi.org/10.1016/s0167-9473(96)00027-8
9 https://doi.org/10.1080/01621459.1984.10477105
10 https://doi.org/10.1080/01621459.1987.10478500
11 https://doi.org/10.1080/01621459.1990.10475313
12 https://doi.org/10.1137/0212002
13 https://doi.org/10.1137/0215023
14 https://doi.org/10.1137/0216005
15 https://doi.org/10.1145/6138.6151
16 https://doi.org/10.1214/aoms/1177728498
17 https://doi.org/10.1214/aos/1017939144
18 https://doi.org/10.1214/aos/1018031260
19 https://doi.org/10.1214/aos/1176347507
20 https://doi.org/10.1214/aos/1176348890
21 https://doi.org/10.2307/2291471
22 https://doi.org/10.2307/2986073
23 schema:datePublished 2003-04
24 schema:datePublishedReg 2003-04-01
25 schema:description The concept of location depth was introduced as a way to extend the univariate notion of ranking to a bivariate configuration of data points. It has been used successfully for robust estimation, hypothesis testing, and graphical display. The depth contours form a collection of nested polygons, and the center of the deepest contour is called the Tukey median. The only available implemented algorithms for the depth contours and the Tukey median are slow, which limits their usefulness. In this paper we describe an optimal algorithm which computes all bivariate depth contours in O(n2) time and space, using topological sweep of the dual arrangement of lines. Once these contours are known, the location depth of any point can be computed in O(log2n) time with no additional preprocessing or in O(log n) time after O(n2) preprocessing. We provide fast implementations of these algorithms to allow their use in everyday statistical practice.
26 schema:genre research_article
27 schema:inLanguage en
28 schema:isAccessibleForFree false
29 schema:isPartOf N015df214edf942aaaa917cff4cbdf953
30 Nc273fb1340b44324956039a762e8a968
31 sg:journal.1327447
32 schema:name Efficient computation of location depth contours by methods of computational geometry
33 schema:pagination 153-162
34 schema:productId N50c3f52798ca4553a876096c54c45783
35 N8710c9d5ada648a28af5cc365b4bf09b
36 Nae1dc6a770764cb6ada2afa77a9644dd
37 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024351010
38 https://doi.org/10.1023/a:1023208625954
39 schema:sdDatePublished 2019-04-10T17:26
40 schema:sdLicense https://scigraph.springernature.com/explorer/license/
41 schema:sdPublisher N6e1ba4d80d544ec49f7886c5e755c2eb
42 schema:url http://link.springer.com/10.1023/A:1023208625954
43 sgo:license sg:explorer/license/
44 sgo:sdDataset articles
45 rdf:type schema:ScholarlyArticle
46 N015df214edf942aaaa917cff4cbdf953 schema:volumeNumber 13
47 rdf:type schema:PublicationVolume
48 N0517bdb60653415a9523fa2cf5e6f6bd rdf:first sg:person.0775337371.63
49 rdf:rest Ne2c72425fd84482ea9e408217ff91dcf
50 N50c3f52798ca4553a876096c54c45783 schema:name readcube_id
51 schema:value 7402a4b1066c4eb2b3bb6d4c9f76df802714bfda333e38edb5f6be3cf17476c7
52 rdf:type schema:PropertyValue
53 N6e1ba4d80d544ec49f7886c5e755c2eb schema:name Springer Nature - SN SciGraph project
54 rdf:type schema:Organization
55 N79819989098e44c082064f4bfd984f3e schema:affiliation https://www.grid.ac/institutes/grid.429997.8
56 schema:familyName Miller
57 schema:givenName Kim
58 rdf:type schema:Person
59 N85564e63f1f44948adbd31025cacc876 rdf:first N79819989098e44c082064f4bfd984f3e
60 rdf:rest Ncfabb21c001340c09af16bd5371b2e02
61 N8710c9d5ada648a28af5cc365b4bf09b schema:name dimensions_id
62 schema:value pub.1024351010
63 rdf:type schema:PropertyValue
64 N8f2b4a12fd01400e89b5d4e035a9aa4f rdf:first sg:person.01057276224.31
65 rdf:rest rdf:nil
66 Nae1dc6a770764cb6ada2afa77a9644dd schema:name doi
67 schema:value 10.1023/a:1023208625954
68 rdf:type schema:PropertyValue
69 Nc273fb1340b44324956039a762e8a968 schema:issueNumber 2
70 rdf:type schema:PublicationIssue
71 Ncfabb21c001340c09af16bd5371b2e02 rdf:first sg:person.011667706746.30
72 rdf:rest N0517bdb60653415a9523fa2cf5e6f6bd
73 Nded0624938fc440d85101d042488ef67 rdf:first sg:person.01310301314.56
74 rdf:rest Ne30feaea4a7a433cbb24fd207c50f429
75 Ne2c72425fd84482ea9e408217ff91dcf rdf:first sg:person.010430400733.16
76 rdf:rest Nded0624938fc440d85101d042488ef67
77 Ne30feaea4a7a433cbb24fd207c50f429 rdf:first sg:person.01240505005.22
78 rdf:rest N8f2b4a12fd01400e89b5d4e035a9aa4f
79 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
80 schema:name Mathematical Sciences
81 rdf:type schema:DefinedTerm
82 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
83 schema:name Statistics
84 rdf:type schema:DefinedTerm
85 sg:journal.1327447 schema:issn 0960-3174
86 1573-1375
87 schema:name Statistics and Computing
88 rdf:type schema:Periodical
89 sg:person.010430400733.16 schema:affiliation https://www.grid.ac/institutes/grid.5319.e
90 schema:familyName Sellarès
91 schema:givenName J. Antoni
92 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010430400733.16
93 rdf:type schema:Person
94 sg:person.01057276224.31 schema:affiliation https://www.grid.ac/institutes/grid.5284.b
95 schema:familyName Struyf
96 schema:givenName Anja
97 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01057276224.31
98 rdf:type schema:Person
99 sg:person.011667706746.30 schema:affiliation https://www.grid.ac/institutes/grid.430387.b
100 schema:familyName Ramaswami
101 schema:givenName Suneeta
102 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011667706746.30
103 rdf:type schema:Person
104 sg:person.01240505005.22 schema:affiliation https://www.grid.ac/institutes/grid.263724.6
105 schema:familyName Streinu
106 schema:givenName Ileana
107 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01240505005.22
108 rdf:type schema:Person
109 sg:person.01310301314.56 schema:affiliation https://www.grid.ac/institutes/grid.263724.6
110 schema:familyName Souvaine
111 schema:givenName Diane
112 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01310301314.56
113 rdf:type schema:Person
114 sg:person.0775337371.63 schema:affiliation https://www.grid.ac/institutes/grid.5284.b
115 schema:familyName Rousseeuw
116 schema:givenName Peter
117 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0775337371.63
118 rdf:type schema:Person
119 sg:pub.10.1007/3-540-45643-0_12 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023247090
120 https://doi.org/10.1007/3-540-45643-0_12
121 rdf:type schema:CreativeWork
122 sg:pub.10.1007/pl00009354 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027985175
123 https://doi.org/10.1007/pl00009354
124 rdf:type schema:CreativeWork
125 sg:pub.10.1023/a:1008945009397 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024868624
126 https://doi.org/10.1023/a:1008945009397
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1016/0022-0000(89)90038-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1014418612
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1016/s0167-9473(96)00027-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034778667
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1080/01621459.1984.10477105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058302950
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1080/01621459.1987.10478500 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058303477
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1080/01621459.1990.10475313 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058303948
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1137/0212002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062841682
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1137/0215023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062841885
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1137/0216005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062841951
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1145/6138.6151 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037924809
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1214/aoms/1177728498 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064401417
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1214/aos/1017939144 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064405960
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1214/aos/1018031260 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064406019
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1214/aos/1176347507 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064408383
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1214/aos/1176348890 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064408724
155 rdf:type schema:CreativeWork
156 https://doi.org/10.2307/2291471 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069864152
157 rdf:type schema:CreativeWork
158 https://doi.org/10.2307/2986073 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101983592
159 rdf:type schema:CreativeWork
160 https://www.grid.ac/institutes/grid.263724.6 schema:alternateName Smith College
161 schema:name Department of Computer Science, Smith College, 01063, Northampton, MA
162 rdf:type schema:Organization
163 https://www.grid.ac/institutes/grid.429997.8 schema:alternateName Tufts University
164 schema:name Department of Electrical Engineering and Computer Science, Tufts University, 02155, Medford, MA
165 rdf:type schema:Organization
166 https://www.grid.ac/institutes/grid.430387.b schema:alternateName Rutgers University
167 schema:name Department of Computer Science, Rutgers University, 08102, Camden, NJ
168 rdf:type schema:Organization
169 https://www.grid.ac/institutes/grid.5284.b schema:alternateName University of Antwerp
170 schema:name Department of Mathematics and Computer Science, University of Antwerp, Middelheimlaan 1, B-2020, Antwerp, Belgium
171 rdf:type schema:Organization
172 https://www.grid.ac/institutes/grid.5319.e schema:alternateName University of Girona
173 schema:name Institut d'Informàtica i Aplicacions, Universitat de Girona, Spain
174 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...