Efficient computation of location depth contours by methods of computational geometry View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2003-04

AUTHORS

Kim Miller, Suneeta Ramaswami, Peter Rousseeuw, J. Antoni Sellarès, Diane Souvaine, Ileana Streinu, Anja Struyf

ABSTRACT

The concept of location depth was introduced as a way to extend the univariate notion of ranking to a bivariate configuration of data points. It has been used successfully for robust estimation, hypothesis testing, and graphical display. The depth contours form a collection of nested polygons, and the center of the deepest contour is called the Tukey median. The only available implemented algorithms for the depth contours and the Tukey median are slow, which limits their usefulness. In this paper we describe an optimal algorithm which computes all bivariate depth contours in O(n2) time and space, using topological sweep of the dual arrangement of lines. Once these contours are known, the location depth of any point can be computed in O(log2n) time with no additional preprocessing or in O(log n) time after O(n2) preprocessing. We provide fast implementations of these algorithms to allow their use in everyday statistical practice. More... »

PAGES

153-162

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1023/a:1023208625954

DOI

http://dx.doi.org/10.1023/a:1023208625954

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1024351010


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Tufts University", 
          "id": "https://www.grid.ac/institutes/grid.429997.8", 
          "name": [
            "Department of Electrical Engineering and Computer Science, Tufts University, 02155, Medford, MA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Miller", 
        "givenName": "Kim", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Rutgers University", 
          "id": "https://www.grid.ac/institutes/grid.430387.b", 
          "name": [
            "Department of Computer Science, Rutgers University, 08102, Camden, NJ"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ramaswami", 
        "givenName": "Suneeta", 
        "id": "sg:person.011667706746.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011667706746.30"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Antwerp", 
          "id": "https://www.grid.ac/institutes/grid.5284.b", 
          "name": [
            "Department of Mathematics and Computer Science, University of Antwerp, Middelheimlaan 1, B-2020, Antwerp, Belgium"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rousseeuw", 
        "givenName": "Peter", 
        "id": "sg:person.0775337371.63", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0775337371.63"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Girona", 
          "id": "https://www.grid.ac/institutes/grid.5319.e", 
          "name": [
            "Institut d'Inform\u00e0tica i Aplicacions, Universitat de Girona, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sellar\u00e8s", 
        "givenName": "J. Antoni", 
        "id": "sg:person.010430400733.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010430400733.16"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Smith College", 
          "id": "https://www.grid.ac/institutes/grid.263724.6", 
          "name": [
            "Department of Computer Science, Smith College, 01063, Northampton, MA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Souvaine", 
        "givenName": "Diane", 
        "id": "sg:person.01310301314.56", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01310301314.56"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Smith College", 
          "id": "https://www.grid.ac/institutes/grid.263724.6", 
          "name": [
            "Department of Computer Science, Smith College, 01063, Northampton, MA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Streinu", 
        "givenName": "Ileana", 
        "id": "sg:person.01240505005.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01240505005.22"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Antwerp", 
          "id": "https://www.grid.ac/institutes/grid.5284.b", 
          "name": [
            "Department of Mathematics and Computer Science, University of Antwerp, Middelheimlaan 1, B-2020, Antwerp, Belgium"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Struyf", 
        "givenName": "Anja", 
        "id": "sg:person.01057276224.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01057276224.31"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/0022-0000(89)90038-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014418612"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/3-540-45643-0_12", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023247090", 
          "https://doi.org/10.1007/3-540-45643-0_12"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/3-540-45643-0_12", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023247090", 
          "https://doi.org/10.1007/3-540-45643-0_12"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1008945009397", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024868624", 
          "https://doi.org/10.1023/a:1008945009397"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/pl00009354", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027985175", 
          "https://doi.org/10.1007/pl00009354"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/pl00009354", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027985175", 
          "https://doi.org/10.1007/pl00009354"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0167-9473(96)00027-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034778667"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/6138.6151", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037924809"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01621459.1984.10477105", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058302950"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01621459.1987.10478500", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058303477"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01621459.1990.10475313", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058303948"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/0212002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062841682"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/0215023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062841885"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/0216005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062841951"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/aoms/1177728498", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064401417"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/aos/1017939144", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064405960"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/aos/1018031260", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064406019"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/aos/1176347507", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064408383"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/aos/1176348890", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064408724"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2291471", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069864152"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2986073", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101983592"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2986073", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101983592"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2003-04", 
    "datePublishedReg": "2003-04-01", 
    "description": "The concept of location depth was introduced as a way to extend the univariate notion of ranking to a bivariate configuration of data points. It has been used successfully for robust estimation, hypothesis testing, and graphical display. The depth contours form a collection of nested polygons, and the center of the deepest contour is called the Tukey median. The only available implemented algorithms for the depth contours and the Tukey median are slow, which limits their usefulness. In this paper we describe an optimal algorithm which computes all bivariate depth contours in O(n2) time and space, using topological sweep of the dual arrangement of lines. Once these contours are known, the location depth of any point can be computed in O(log2n) time with no additional preprocessing or in O(log n) time after O(n2) preprocessing. We provide fast implementations of these algorithms to allow their use in everyday statistical practice.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1023/a:1023208625954", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1327447", 
        "issn": [
          "0960-3174", 
          "1573-1375"
        ], 
        "name": "Statistics and Computing", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "13"
      }
    ], 
    "name": "Efficient computation of location depth contours by methods of computational geometry", 
    "pagination": "153-162", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "7402a4b1066c4eb2b3bb6d4c9f76df802714bfda333e38edb5f6be3cf17476c7"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1023/a:1023208625954"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1024351010"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1023/a:1023208625954", 
      "https://app.dimensions.ai/details/publication/pub.1024351010"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T17:26", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8672_00000488.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1023/A:1023208625954"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1023/a:1023208625954'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1023/a:1023208625954'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1023/a:1023208625954'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1023/a:1023208625954'


 

This table displays all metadata directly associated to this object as RDF triples.

174 TRIPLES      21 PREDICATES      46 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1023/a:1023208625954 schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author Nba8efdf642ce4a6ca6cbc21e8f5db3e2
4 schema:citation sg:pub.10.1007/3-540-45643-0_12
5 sg:pub.10.1007/pl00009354
6 sg:pub.10.1023/a:1008945009397
7 https://doi.org/10.1016/0022-0000(89)90038-x
8 https://doi.org/10.1016/s0167-9473(96)00027-8
9 https://doi.org/10.1080/01621459.1984.10477105
10 https://doi.org/10.1080/01621459.1987.10478500
11 https://doi.org/10.1080/01621459.1990.10475313
12 https://doi.org/10.1137/0212002
13 https://doi.org/10.1137/0215023
14 https://doi.org/10.1137/0216005
15 https://doi.org/10.1145/6138.6151
16 https://doi.org/10.1214/aoms/1177728498
17 https://doi.org/10.1214/aos/1017939144
18 https://doi.org/10.1214/aos/1018031260
19 https://doi.org/10.1214/aos/1176347507
20 https://doi.org/10.1214/aos/1176348890
21 https://doi.org/10.2307/2291471
22 https://doi.org/10.2307/2986073
23 schema:datePublished 2003-04
24 schema:datePublishedReg 2003-04-01
25 schema:description The concept of location depth was introduced as a way to extend the univariate notion of ranking to a bivariate configuration of data points. It has been used successfully for robust estimation, hypothesis testing, and graphical display. The depth contours form a collection of nested polygons, and the center of the deepest contour is called the Tukey median. The only available implemented algorithms for the depth contours and the Tukey median are slow, which limits their usefulness. In this paper we describe an optimal algorithm which computes all bivariate depth contours in O(n2) time and space, using topological sweep of the dual arrangement of lines. Once these contours are known, the location depth of any point can be computed in O(log2n) time with no additional preprocessing or in O(log n) time after O(n2) preprocessing. We provide fast implementations of these algorithms to allow their use in everyday statistical practice.
26 schema:genre research_article
27 schema:inLanguage en
28 schema:isAccessibleForFree false
29 schema:isPartOf N26c417377fa2498f9b6eaaefbebf5cec
30 N8ade27f8a7134ab99d2c562d3c5c44f4
31 sg:journal.1327447
32 schema:name Efficient computation of location depth contours by methods of computational geometry
33 schema:pagination 153-162
34 schema:productId N251e48e2763746fda0ad526b5eb1a44b
35 N57459635914441f7b388d5ec9ec73cd4
36 Nce0d511e0f7744c0852e4154739ba652
37 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024351010
38 https://doi.org/10.1023/a:1023208625954
39 schema:sdDatePublished 2019-04-10T17:26
40 schema:sdLicense https://scigraph.springernature.com/explorer/license/
41 schema:sdPublisher N531aa55be5024cd98d483b9d6f57f190
42 schema:url http://link.springer.com/10.1023/A:1023208625954
43 sgo:license sg:explorer/license/
44 sgo:sdDataset articles
45 rdf:type schema:ScholarlyArticle
46 N251e48e2763746fda0ad526b5eb1a44b schema:name readcube_id
47 schema:value 7402a4b1066c4eb2b3bb6d4c9f76df802714bfda333e38edb5f6be3cf17476c7
48 rdf:type schema:PropertyValue
49 N26c417377fa2498f9b6eaaefbebf5cec schema:issueNumber 2
50 rdf:type schema:PublicationIssue
51 N35ab06f63773424a925f427a2cb04ef4 schema:affiliation https://www.grid.ac/institutes/grid.429997.8
52 schema:familyName Miller
53 schema:givenName Kim
54 rdf:type schema:Person
55 N43b22e35e0bb47bc8d8f4e1788e8423a rdf:first sg:person.01310301314.56
56 rdf:rest Nedf42535a23847caaba540e372e8622f
57 N5092e3f7280946d2a3e40a02550bc325 rdf:first sg:person.01057276224.31
58 rdf:rest rdf:nil
59 N531aa55be5024cd98d483b9d6f57f190 schema:name Springer Nature - SN SciGraph project
60 rdf:type schema:Organization
61 N57459635914441f7b388d5ec9ec73cd4 schema:name dimensions_id
62 schema:value pub.1024351010
63 rdf:type schema:PropertyValue
64 N8ade27f8a7134ab99d2c562d3c5c44f4 schema:volumeNumber 13
65 rdf:type schema:PublicationVolume
66 Na8ee638e260f4ee4b2d774356399a1d4 rdf:first sg:person.011667706746.30
67 rdf:rest Nbdb59ef616ec4683a8e0373ce44aa9e1
68 Nba8efdf642ce4a6ca6cbc21e8f5db3e2 rdf:first N35ab06f63773424a925f427a2cb04ef4
69 rdf:rest Na8ee638e260f4ee4b2d774356399a1d4
70 Nbdb59ef616ec4683a8e0373ce44aa9e1 rdf:first sg:person.0775337371.63
71 rdf:rest Nef5ce28b981543169c37f067d2f53b20
72 Nce0d511e0f7744c0852e4154739ba652 schema:name doi
73 schema:value 10.1023/a:1023208625954
74 rdf:type schema:PropertyValue
75 Nedf42535a23847caaba540e372e8622f rdf:first sg:person.01240505005.22
76 rdf:rest N5092e3f7280946d2a3e40a02550bc325
77 Nef5ce28b981543169c37f067d2f53b20 rdf:first sg:person.010430400733.16
78 rdf:rest N43b22e35e0bb47bc8d8f4e1788e8423a
79 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
80 schema:name Mathematical Sciences
81 rdf:type schema:DefinedTerm
82 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
83 schema:name Statistics
84 rdf:type schema:DefinedTerm
85 sg:journal.1327447 schema:issn 0960-3174
86 1573-1375
87 schema:name Statistics and Computing
88 rdf:type schema:Periodical
89 sg:person.010430400733.16 schema:affiliation https://www.grid.ac/institutes/grid.5319.e
90 schema:familyName Sellarès
91 schema:givenName J. Antoni
92 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010430400733.16
93 rdf:type schema:Person
94 sg:person.01057276224.31 schema:affiliation https://www.grid.ac/institutes/grid.5284.b
95 schema:familyName Struyf
96 schema:givenName Anja
97 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01057276224.31
98 rdf:type schema:Person
99 sg:person.011667706746.30 schema:affiliation https://www.grid.ac/institutes/grid.430387.b
100 schema:familyName Ramaswami
101 schema:givenName Suneeta
102 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011667706746.30
103 rdf:type schema:Person
104 sg:person.01240505005.22 schema:affiliation https://www.grid.ac/institutes/grid.263724.6
105 schema:familyName Streinu
106 schema:givenName Ileana
107 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01240505005.22
108 rdf:type schema:Person
109 sg:person.01310301314.56 schema:affiliation https://www.grid.ac/institutes/grid.263724.6
110 schema:familyName Souvaine
111 schema:givenName Diane
112 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01310301314.56
113 rdf:type schema:Person
114 sg:person.0775337371.63 schema:affiliation https://www.grid.ac/institutes/grid.5284.b
115 schema:familyName Rousseeuw
116 schema:givenName Peter
117 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0775337371.63
118 rdf:type schema:Person
119 sg:pub.10.1007/3-540-45643-0_12 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023247090
120 https://doi.org/10.1007/3-540-45643-0_12
121 rdf:type schema:CreativeWork
122 sg:pub.10.1007/pl00009354 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027985175
123 https://doi.org/10.1007/pl00009354
124 rdf:type schema:CreativeWork
125 sg:pub.10.1023/a:1008945009397 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024868624
126 https://doi.org/10.1023/a:1008945009397
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1016/0022-0000(89)90038-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1014418612
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1016/s0167-9473(96)00027-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034778667
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1080/01621459.1984.10477105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058302950
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1080/01621459.1987.10478500 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058303477
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1080/01621459.1990.10475313 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058303948
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1137/0212002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062841682
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1137/0215023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062841885
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1137/0216005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062841951
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1145/6138.6151 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037924809
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1214/aoms/1177728498 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064401417
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1214/aos/1017939144 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064405960
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1214/aos/1018031260 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064406019
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1214/aos/1176347507 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064408383
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1214/aos/1176348890 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064408724
155 rdf:type schema:CreativeWork
156 https://doi.org/10.2307/2291471 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069864152
157 rdf:type schema:CreativeWork
158 https://doi.org/10.2307/2986073 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101983592
159 rdf:type schema:CreativeWork
160 https://www.grid.ac/institutes/grid.263724.6 schema:alternateName Smith College
161 schema:name Department of Computer Science, Smith College, 01063, Northampton, MA
162 rdf:type schema:Organization
163 https://www.grid.ac/institutes/grid.429997.8 schema:alternateName Tufts University
164 schema:name Department of Electrical Engineering and Computer Science, Tufts University, 02155, Medford, MA
165 rdf:type schema:Organization
166 https://www.grid.ac/institutes/grid.430387.b schema:alternateName Rutgers University
167 schema:name Department of Computer Science, Rutgers University, 08102, Camden, NJ
168 rdf:type schema:Organization
169 https://www.grid.ac/institutes/grid.5284.b schema:alternateName University of Antwerp
170 schema:name Department of Mathematics and Computer Science, University of Antwerp, Middelheimlaan 1, B-2020, Antwerp, Belgium
171 rdf:type schema:Organization
172 https://www.grid.ac/institutes/grid.5319.e schema:alternateName University of Girona
173 schema:name Institut d'Informàtica i Aplicacions, Universitat de Girona, Spain
174 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...