Scheduling Deliveries in Vehicles with Multiple Compartments View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2003-05

AUTHORS

Emmanual D. Chajakis, Monique Guignard

ABSTRACT

Vehicles with multiple compartments are used, among others, for distribution to convenience stores. Based on the convenience srores paradigm we propose optimazation models for two possible cargp space layouts and explore their characteristics through computational experiments with randomly generated data sets. In a small real data set an optimal solution of one of the models requires fewer vehicles because compartment capacities are utilized more tightly. We develop and test approximation schemes based on Lagrangean Relaxation that generate good feasible solutions in reasonable time. The good quality of the solutions is quaranteed by the gap between their value and the Lagrangean Relaxation bound. These schemes could be valuable for large real applications. More... »

PAGES

43-78

Identifiers

URI

http://scigraph.springernature.com/pub.10.1023/a:1023067016014

DOI

http://dx.doi.org/10.1023/a:1023067016014

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1040856266


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "Merrill Lynch & Co., 08542, Plainsboro, NJ, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chajakis", 
        "givenName": "Emmanual D.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Pennsylvania", 
          "id": "https://www.grid.ac/institutes/grid.25879.31", 
          "name": [
            "Operations and Information Management Department, The Wharton School, University of Pennsylvania, 19104, Philadelphia, PA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Guignard", 
        "givenName": "Monique", 
        "id": "sg:person.014736120433.24", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014736120433.24"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf01580881", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008969223", 
          "https://doi.org/10.1007/bf01580881"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01580881", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008969223", 
          "https://doi.org/10.1007/bf01580881"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02591863", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009877216", 
          "https://doi.org/10.1007/bf02591863"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02591863", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009877216", 
          "https://doi.org/10.1007/bf02591863"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1057/jors.1996.152", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010067150", 
          "https://doi.org/10.1057/jors.1996.152"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0377-2217(89)90354-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020260027"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0377-2217(89)90354-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020260027"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0377-2217(93)90197-u", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022447737"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0377-2217(93)90197-u", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022447737"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0166-218x(93)90176-o", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032775621"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/net.3230140406", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038860602"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01584070", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044774302", 
          "https://doi.org/10.1007/bf01584070"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1287/inte.15.6.84", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064708908"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1287/mnsc.37.6.695", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064720828"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1287/moor.10.4.527", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064722701"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1287/opre.12.4.568", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064726778"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1287/opre.18.6.1138", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064727507"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1287/opre.29.1.49", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064729178"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1287/opre.33.5.1050", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064729652"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1287/opre.34.2.237", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064729705"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1287/opre.40.2.342", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064730422"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1287/opre.40.6.1095", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064730509"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1287/trsc.26.3.161", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064735224"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2003-05", 
    "datePublishedReg": "2003-05-01", 
    "description": "Vehicles with multiple compartments are used, among others, for distribution to convenience stores. Based on the convenience srores paradigm we propose optimazation models for two possible cargp space layouts and explore their characteristics through computational experiments with randomly generated data sets. In a small real data set an optimal solution of one of the models requires fewer vehicles because compartment capacities are utilized more tightly. We develop and test approximation schemes based on Lagrangean Relaxation that generate good feasible solutions in reasonable time. The good quality of the solutions is quaranteed by the gap between their value and the Lagrangean Relaxation bound. These schemes could be valuable for large real applications.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1023/a:1023067016014", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1050312", 
        "issn": [
          "0925-5001", 
          "1573-2916"
        ], 
        "name": "Journal of Global Optimization", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "26"
      }
    ], 
    "name": "Scheduling Deliveries in Vehicles with Multiple Compartments", 
    "pagination": "43-78", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "c29f9bf57a16e50864d46d41ade192373cb7bb38235d6aa4a4819683bb238f76"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1023/a:1023067016014"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1040856266"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1023/a:1023067016014", 
      "https://app.dimensions.ai/details/publication/pub.1040856266"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T14:08", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8660_00000507.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1023%2FA%3A1023067016014"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1023/a:1023067016014'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1023/a:1023067016014'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1023/a:1023067016014'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1023/a:1023067016014'


 

This table displays all metadata directly associated to this object as RDF triples.

130 TRIPLES      21 PREDICATES      46 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1023/a:1023067016014 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N0f75e350307c4de0b5a9b9c7dc3a2d34
4 schema:citation sg:pub.10.1007/bf01580881
5 sg:pub.10.1007/bf01584070
6 sg:pub.10.1007/bf02591863
7 sg:pub.10.1057/jors.1996.152
8 https://doi.org/10.1002/net.3230140406
9 https://doi.org/10.1016/0166-218x(93)90176-o
10 https://doi.org/10.1016/0377-2217(89)90354-8
11 https://doi.org/10.1016/0377-2217(93)90197-u
12 https://doi.org/10.1287/inte.15.6.84
13 https://doi.org/10.1287/mnsc.37.6.695
14 https://doi.org/10.1287/moor.10.4.527
15 https://doi.org/10.1287/opre.12.4.568
16 https://doi.org/10.1287/opre.18.6.1138
17 https://doi.org/10.1287/opre.29.1.49
18 https://doi.org/10.1287/opre.33.5.1050
19 https://doi.org/10.1287/opre.34.2.237
20 https://doi.org/10.1287/opre.40.2.342
21 https://doi.org/10.1287/opre.40.6.1095
22 https://doi.org/10.1287/trsc.26.3.161
23 schema:datePublished 2003-05
24 schema:datePublishedReg 2003-05-01
25 schema:description Vehicles with multiple compartments are used, among others, for distribution to convenience stores. Based on the convenience srores paradigm we propose optimazation models for two possible cargp space layouts and explore their characteristics through computational experiments with randomly generated data sets. In a small real data set an optimal solution of one of the models requires fewer vehicles because compartment capacities are utilized more tightly. We develop and test approximation schemes based on Lagrangean Relaxation that generate good feasible solutions in reasonable time. The good quality of the solutions is quaranteed by the gap between their value and the Lagrangean Relaxation bound. These schemes could be valuable for large real applications.
26 schema:genre research_article
27 schema:inLanguage en
28 schema:isAccessibleForFree false
29 schema:isPartOf N06504b89bf0d4520b35193928a7ee422
30 N74ba2e6fff7446798b7318f522f0c320
31 sg:journal.1050312
32 schema:name Scheduling Deliveries in Vehicles with Multiple Compartments
33 schema:pagination 43-78
34 schema:productId N1ec1fa762af84bde93915581f04cebf9
35 N6e38f41ca9fa4069a4322da868a9bd51
36 Ncfa1f44e96e84bc59f5047d38414cb18
37 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040856266
38 https://doi.org/10.1023/a:1023067016014
39 schema:sdDatePublished 2019-04-10T14:08
40 schema:sdLicense https://scigraph.springernature.com/explorer/license/
41 schema:sdPublisher Naa9942c83b434a46af9e3b68fbc48c7f
42 schema:url http://link.springer.com/10.1023%2FA%3A1023067016014
43 sgo:license sg:explorer/license/
44 sgo:sdDataset articles
45 rdf:type schema:ScholarlyArticle
46 N06504b89bf0d4520b35193928a7ee422 schema:volumeNumber 26
47 rdf:type schema:PublicationVolume
48 N07cba844f691452f84894d31c87c8dcb schema:name Merrill Lynch & Co., 08542, Plainsboro, NJ, USA
49 rdf:type schema:Organization
50 N0f75e350307c4de0b5a9b9c7dc3a2d34 rdf:first Nb9431f76a76641309015796cf0f40815
51 rdf:rest N3fead98cc30841e99a873d40da48c10e
52 N1ec1fa762af84bde93915581f04cebf9 schema:name dimensions_id
53 schema:value pub.1040856266
54 rdf:type schema:PropertyValue
55 N3fead98cc30841e99a873d40da48c10e rdf:first sg:person.014736120433.24
56 rdf:rest rdf:nil
57 N6e38f41ca9fa4069a4322da868a9bd51 schema:name doi
58 schema:value 10.1023/a:1023067016014
59 rdf:type schema:PropertyValue
60 N74ba2e6fff7446798b7318f522f0c320 schema:issueNumber 1
61 rdf:type schema:PublicationIssue
62 Naa9942c83b434a46af9e3b68fbc48c7f schema:name Springer Nature - SN SciGraph project
63 rdf:type schema:Organization
64 Nb9431f76a76641309015796cf0f40815 schema:affiliation N07cba844f691452f84894d31c87c8dcb
65 schema:familyName Chajakis
66 schema:givenName Emmanual D.
67 rdf:type schema:Person
68 Ncfa1f44e96e84bc59f5047d38414cb18 schema:name readcube_id
69 schema:value c29f9bf57a16e50864d46d41ade192373cb7bb38235d6aa4a4819683bb238f76
70 rdf:type schema:PropertyValue
71 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
72 schema:name Information and Computing Sciences
73 rdf:type schema:DefinedTerm
74 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
75 schema:name Artificial Intelligence and Image Processing
76 rdf:type schema:DefinedTerm
77 sg:journal.1050312 schema:issn 0925-5001
78 1573-2916
79 schema:name Journal of Global Optimization
80 rdf:type schema:Periodical
81 sg:person.014736120433.24 schema:affiliation https://www.grid.ac/institutes/grid.25879.31
82 schema:familyName Guignard
83 schema:givenName Monique
84 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014736120433.24
85 rdf:type schema:Person
86 sg:pub.10.1007/bf01580881 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008969223
87 https://doi.org/10.1007/bf01580881
88 rdf:type schema:CreativeWork
89 sg:pub.10.1007/bf01584070 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044774302
90 https://doi.org/10.1007/bf01584070
91 rdf:type schema:CreativeWork
92 sg:pub.10.1007/bf02591863 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009877216
93 https://doi.org/10.1007/bf02591863
94 rdf:type schema:CreativeWork
95 sg:pub.10.1057/jors.1996.152 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010067150
96 https://doi.org/10.1057/jors.1996.152
97 rdf:type schema:CreativeWork
98 https://doi.org/10.1002/net.3230140406 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038860602
99 rdf:type schema:CreativeWork
100 https://doi.org/10.1016/0166-218x(93)90176-o schema:sameAs https://app.dimensions.ai/details/publication/pub.1032775621
101 rdf:type schema:CreativeWork
102 https://doi.org/10.1016/0377-2217(89)90354-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020260027
103 rdf:type schema:CreativeWork
104 https://doi.org/10.1016/0377-2217(93)90197-u schema:sameAs https://app.dimensions.ai/details/publication/pub.1022447737
105 rdf:type schema:CreativeWork
106 https://doi.org/10.1287/inte.15.6.84 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064708908
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1287/mnsc.37.6.695 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064720828
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1287/moor.10.4.527 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064722701
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1287/opre.12.4.568 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064726778
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1287/opre.18.6.1138 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064727507
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1287/opre.29.1.49 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064729178
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1287/opre.33.5.1050 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064729652
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1287/opre.34.2.237 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064729705
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1287/opre.40.2.342 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064730422
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1287/opre.40.6.1095 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064730509
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1287/trsc.26.3.161 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064735224
127 rdf:type schema:CreativeWork
128 https://www.grid.ac/institutes/grid.25879.31 schema:alternateName University of Pennsylvania
129 schema:name Operations and Information Management Department, The Wharton School, University of Pennsylvania, 19104, Philadelphia, PA, USA
130 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...