The Sign of Vortex Charges in High Temperature Superconductors View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2003-05

AUTHORS

Yan Chen, Z. D. Wang, Jian-Xin Zhu, C. S. Ting

ABSTRACT

Based on a widely adopted effective model Hamiltonian with competing antiferromagnetic (AF) and d-wave superconductivity (DSC) interactions, the vortex charge in high Tc superconductors is investigated by solving selfconsistently the Bogoliubov-de Gennes equations. The band parameters are chosen in such a way that the obtained local densities at and far away from the vortex center are in qualitative agreement with the STM measurements on YBCO. Both the hole-rich normal and electron-rich AF vortices are found, depending on the strength of induced AF order. The vortex charge is strongly influenced by the competing effects from the AF order and the DSC order at the vortex core. By tuning the on-site Coulomb repulsion U or the doping parameter δ, a transition between the positive and negative vortex charges may occur. Recent NMR and Hall effect experiments on vortex charges can be understood in terms of the present results. New imaging experiments should be able to probe the vortex charge directly. More... »

PAGES

229-238

Identifiers

URI

http://scigraph.springernature.com/pub.10.1023/a:1022968917822

DOI

http://dx.doi.org/10.1023/a:1022968917822

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1046076781


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Houston", 
          "id": "https://www.grid.ac/institutes/grid.266436.3", 
          "name": [
            "Texas Center for Superconductivity and Department of Physics, University of Houston, 77204, Houston, TX"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chen", 
        "givenName": "Yan", 
        "id": "sg:person.012723014441.62", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012723014441.62"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Hong Kong", 
          "id": "https://www.grid.ac/institutes/grid.194645.b", 
          "name": [
            "Department of Physics, University of Hong Kong, Pokfulam Road, Hong Kong, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Z. D.", 
        "id": "sg:person.011374710011.80", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011374710011.80"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Los Alamos National Laboratory", 
          "id": "https://www.grid.ac/institutes/grid.148313.c", 
          "name": [
            "Theoretical Division, MS B262, Los Alamos National Laboratory, 87545, Los Alamos, NM"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhu", 
        "givenName": "Jian-Xin", 
        "id": "sg:person.01335723032.47", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01335723032.47"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Houston", 
          "id": "https://www.grid.ac/institutes/grid.266436.3", 
          "name": [
            "Texas Center for Superconductivity and Department of Physics, University of Houston, 77204, Houston, TX"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ting", 
        "givenName": "C. S.", 
        "id": "sg:person.011334423061.11", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011334423061.11"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1103/physrevlett.86.312", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009880010"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.86.312", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009880010"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35095012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010659756", 
          "https://doi.org/10.1038/35095012"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35095012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010659756", 
          "https://doi.org/10.1038/35095012"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.52.r3876", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020322761"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.52.r3876", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020322761"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.88.137002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024649694"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.88.137002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024649694"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.79.2871", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035215023"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.79.2871", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035215023"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/375561a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037624168", 
          "https://doi.org/10.1038/375561a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/374434a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037900717", 
          "https://doi.org/10.1038/374434a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.77.566", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042206236"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.77.566", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042206236"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.87.067202", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043599744"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.87.067202", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043599744"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.87.147002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049762978"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.87.147002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049762978"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.63.144502", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050286199"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.63.144502", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050286199"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.72.3875", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060809212"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.72.3875", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060809212"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.75.1384", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060811541"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.75.1384", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060811541"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.75.2754", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060811900"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.75.2754", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060811900"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.80.3594", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060817311"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.80.3594", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060817311"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1056986", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062444319"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/s0217979200003630", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062931873"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/s0217979299003428", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062942444"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1143/jpsj.67.3368", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063117493"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2003-05", 
    "datePublishedReg": "2003-05-01", 
    "description": "Based on a widely adopted effective model Hamiltonian with competing antiferromagnetic (AF) and d-wave superconductivity (DSC) interactions, the vortex charge in high Tc superconductors is investigated by solving selfconsistently the Bogoliubov-de Gennes equations. The band parameters are chosen in such a way that the obtained local densities at and far away from the vortex center are in qualitative agreement with the STM measurements on YBCO. Both the hole-rich normal and electron-rich AF vortices are found, depending on the strength of induced AF order. The vortex charge is strongly influenced by the competing effects from the AF order and the DSC order at the vortex core. By tuning the on-site Coulomb repulsion U or the doping parameter \u03b4, a transition between the positive and negative vortex charges may occur. Recent NMR and Hall effect experiments on vortex charges can be understood in terms of the present results. New imaging experiments should be able to probe the vortex charge directly.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1023/a:1022968917822", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1030474", 
        "issn": [
          "0022-2291", 
          "1573-7357"
        ], 
        "name": "Journal of Low Temperature Physics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3-4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "131"
      }
    ], 
    "name": "The Sign of Vortex Charges in High Temperature Superconductors", 
    "pagination": "229-238", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "db7c186a568e45e82a5141d199b630f85826dbde6a2859a822807c910a4d96f2"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1023/a:1022968917822"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1046076781"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1023/a:1022968917822", 
      "https://app.dimensions.ai/details/publication/pub.1046076781"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T14:15", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8660_00000537.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1023%2FA%3A1022968917822"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1023/a:1022968917822'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1023/a:1022968917822'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1023/a:1022968917822'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1023/a:1022968917822'


 

This table displays all metadata directly associated to this object as RDF triples.

148 TRIPLES      21 PREDICATES      46 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1023/a:1022968917822 schema:about anzsrc-for:03
2 anzsrc-for:0306
3 schema:author N578b4cc1c0384357baaea58c9b0323b0
4 schema:citation sg:pub.10.1038/35095012
5 sg:pub.10.1038/374434a0
6 sg:pub.10.1038/375561a0
7 https://doi.org/10.1103/physrevb.52.r3876
8 https://doi.org/10.1103/physrevb.63.144502
9 https://doi.org/10.1103/physrevlett.72.3875
10 https://doi.org/10.1103/physrevlett.75.1384
11 https://doi.org/10.1103/physrevlett.75.2754
12 https://doi.org/10.1103/physrevlett.77.566
13 https://doi.org/10.1103/physrevlett.79.2871
14 https://doi.org/10.1103/physrevlett.80.3594
15 https://doi.org/10.1103/physrevlett.86.312
16 https://doi.org/10.1103/physrevlett.87.067202
17 https://doi.org/10.1103/physrevlett.87.147002
18 https://doi.org/10.1103/physrevlett.88.137002
19 https://doi.org/10.1126/science.1056986
20 https://doi.org/10.1142/s0217979200003630
21 https://doi.org/10.1142/s0217979299003428
22 https://doi.org/10.1143/jpsj.67.3368
23 schema:datePublished 2003-05
24 schema:datePublishedReg 2003-05-01
25 schema:description Based on a widely adopted effective model Hamiltonian with competing antiferromagnetic (AF) and d-wave superconductivity (DSC) interactions, the vortex charge in high Tc superconductors is investigated by solving selfconsistently the Bogoliubov-de Gennes equations. The band parameters are chosen in such a way that the obtained local densities at and far away from the vortex center are in qualitative agreement with the STM measurements on YBCO. Both the hole-rich normal and electron-rich AF vortices are found, depending on the strength of induced AF order. The vortex charge is strongly influenced by the competing effects from the AF order and the DSC order at the vortex core. By tuning the on-site Coulomb repulsion U or the doping parameter δ, a transition between the positive and negative vortex charges may occur. Recent NMR and Hall effect experiments on vortex charges can be understood in terms of the present results. New imaging experiments should be able to probe the vortex charge directly.
26 schema:genre research_article
27 schema:inLanguage en
28 schema:isAccessibleForFree false
29 schema:isPartOf N172858f25af34389b3c145c066704359
30 Nb3b545a7aad843b2a27c5ad07bbf78c5
31 sg:journal.1030474
32 schema:name The Sign of Vortex Charges in High Temperature Superconductors
33 schema:pagination 229-238
34 schema:productId N5a0eb8265118464680b707a8eb2fd5ed
35 Nbaa12e08729740519f08e1eb364fce64
36 Nc42b302390354093854b90875e174a6a
37 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046076781
38 https://doi.org/10.1023/a:1022968917822
39 schema:sdDatePublished 2019-04-10T14:15
40 schema:sdLicense https://scigraph.springernature.com/explorer/license/
41 schema:sdPublisher N59dc7205f45546bd8b984ee51df5a5ac
42 schema:url http://link.springer.com/10.1023%2FA%3A1022968917822
43 sgo:license sg:explorer/license/
44 sgo:sdDataset articles
45 rdf:type schema:ScholarlyArticle
46 N061de537306d42a4b732de842a5f916f rdf:first sg:person.011334423061.11
47 rdf:rest rdf:nil
48 N172858f25af34389b3c145c066704359 schema:issueNumber 3-4
49 rdf:type schema:PublicationIssue
50 N578b4cc1c0384357baaea58c9b0323b0 rdf:first sg:person.012723014441.62
51 rdf:rest Ne686d780cb874fa2bad5a6ee2ba16345
52 N59dc7205f45546bd8b984ee51df5a5ac schema:name Springer Nature - SN SciGraph project
53 rdf:type schema:Organization
54 N5a0eb8265118464680b707a8eb2fd5ed schema:name dimensions_id
55 schema:value pub.1046076781
56 rdf:type schema:PropertyValue
57 N713c450674ec4ba8b29ebbd1aef04df6 rdf:first sg:person.01335723032.47
58 rdf:rest N061de537306d42a4b732de842a5f916f
59 Nb3b545a7aad843b2a27c5ad07bbf78c5 schema:volumeNumber 131
60 rdf:type schema:PublicationVolume
61 Nbaa12e08729740519f08e1eb364fce64 schema:name doi
62 schema:value 10.1023/a:1022968917822
63 rdf:type schema:PropertyValue
64 Nc42b302390354093854b90875e174a6a schema:name readcube_id
65 schema:value db7c186a568e45e82a5141d199b630f85826dbde6a2859a822807c910a4d96f2
66 rdf:type schema:PropertyValue
67 Ne686d780cb874fa2bad5a6ee2ba16345 rdf:first sg:person.011374710011.80
68 rdf:rest N713c450674ec4ba8b29ebbd1aef04df6
69 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
70 schema:name Chemical Sciences
71 rdf:type schema:DefinedTerm
72 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
73 schema:name Physical Chemistry (incl. Structural)
74 rdf:type schema:DefinedTerm
75 sg:journal.1030474 schema:issn 0022-2291
76 1573-7357
77 schema:name Journal of Low Temperature Physics
78 rdf:type schema:Periodical
79 sg:person.011334423061.11 schema:affiliation https://www.grid.ac/institutes/grid.266436.3
80 schema:familyName Ting
81 schema:givenName C. S.
82 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011334423061.11
83 rdf:type schema:Person
84 sg:person.011374710011.80 schema:affiliation https://www.grid.ac/institutes/grid.194645.b
85 schema:familyName Wang
86 schema:givenName Z. D.
87 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011374710011.80
88 rdf:type schema:Person
89 sg:person.012723014441.62 schema:affiliation https://www.grid.ac/institutes/grid.266436.3
90 schema:familyName Chen
91 schema:givenName Yan
92 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012723014441.62
93 rdf:type schema:Person
94 sg:person.01335723032.47 schema:affiliation https://www.grid.ac/institutes/grid.148313.c
95 schema:familyName Zhu
96 schema:givenName Jian-Xin
97 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01335723032.47
98 rdf:type schema:Person
99 sg:pub.10.1038/35095012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010659756
100 https://doi.org/10.1038/35095012
101 rdf:type schema:CreativeWork
102 sg:pub.10.1038/374434a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037900717
103 https://doi.org/10.1038/374434a0
104 rdf:type schema:CreativeWork
105 sg:pub.10.1038/375561a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037624168
106 https://doi.org/10.1038/375561a0
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1103/physrevb.52.r3876 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020322761
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1103/physrevb.63.144502 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050286199
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1103/physrevlett.72.3875 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060809212
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1103/physrevlett.75.1384 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060811541
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1103/physrevlett.75.2754 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060811900
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1103/physrevlett.77.566 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042206236
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1103/physrevlett.79.2871 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035215023
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1103/physrevlett.80.3594 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060817311
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1103/physrevlett.86.312 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009880010
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1103/physrevlett.87.067202 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043599744
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1103/physrevlett.87.147002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049762978
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1103/physrevlett.88.137002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024649694
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1126/science.1056986 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062444319
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1142/s0217979200003630 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062931873
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1142/s0217979299003428 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062942444
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1143/jpsj.67.3368 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063117493
139 rdf:type schema:CreativeWork
140 https://www.grid.ac/institutes/grid.148313.c schema:alternateName Los Alamos National Laboratory
141 schema:name Theoretical Division, MS B262, Los Alamos National Laboratory, 87545, Los Alamos, NM
142 rdf:type schema:Organization
143 https://www.grid.ac/institutes/grid.194645.b schema:alternateName University of Hong Kong
144 schema:name Department of Physics, University of Hong Kong, Pokfulam Road, Hong Kong, China
145 rdf:type schema:Organization
146 https://www.grid.ac/institutes/grid.266436.3 schema:alternateName University of Houston
147 schema:name Texas Center for Superconductivity and Department of Physics, University of Houston, 77204, Houston, TX
148 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...