Discovery by Minimal Length Encoding: A Case Study in Molecular Evolution View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

1993-08

AUTHORS

Aleksandar Milosavljević, Jerzy Jurka

ABSTRACT

We apply the Minimal Length Encoding Principle to formalize inference about the evolution of macromolecular sequences. The Principle is shown to imply a combination of Weighted Parsimony and Compatibility methods that have long been used by biologists because of their good practical performance. The background assumptions are expressed as an encoding scheme for the observed data and as heuristic rules for selection of diagnostic positions in the sequences. The Principle was applied to discover new subfamilies of Alu sequences, the most numerous family of repetitive DNA sequences in the human genome. More... »

PAGES

69-87

References to SciGraph publications

Journal

TITLE

Machine Learning

ISSUE

1-3

VOLUME

12

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1023/a:1022871401069

DOI

http://dx.doi.org/10.1023/a:1022871401069

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1010798096


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Oregon State University", 
          "id": "https://www.grid.ac/institutes/grid.4391.f", 
          "name": [
            "Linus Pauling Institute of Science and Medicine, 440 Page Mill Rd., 94306, Palo Alto, CA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Milosavljevi\u0107", 
        "givenName": "Aleksandar", 
        "id": "sg:person.0771403770.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0771403770.00"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Oregon State University", 
          "id": "https://www.grid.ac/institutes/grid.4391.f", 
          "name": [
            "Linus Pauling Institute of Science and Medicine, 440 Page Mill Rd., 94306, Palo Alto, CA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jurka", 
        "givenName": "Jerzy", 
        "id": "sg:person.0663101366.99", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0663101366.99"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf02458580", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001931403", 
          "https://doi.org/10.1007/bf02458580"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02458580", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001931403", 
          "https://doi.org/10.1007/bf02458580"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-5193(68)90128-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002749338"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0004-3702(89)90046-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004978830"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0004-3702(89)90046-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004978830"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/b978-1-55860-213-7.50036-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010945436"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/321356.321363", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012160236"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02515383", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014911372", 
          "https://doi.org/10.1007/bf02515383"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02515383", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014911372", 
          "https://doi.org/10.1007/bf02515383"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02459508", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015439535", 
          "https://doi.org/10.1007/bf02459508"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02459508", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015439535", 
          "https://doi.org/10.1007/bf02459508"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02099850", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016386165", 
          "https://doi.org/10.1007/bf02099850"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02099850", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016386165", 
          "https://doi.org/10.1007/bf02099850"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00114265", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017000685", 
          "https://doi.org/10.1007/bf00114265"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.83.11.3875", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017670206"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0076-6879(90)83041-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021608205"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-2836(81)90087-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024589839"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00207166808803030", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025972892"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0019-9958(64)90223-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027287787"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.85.13.4770", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028476445"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/comjnl/11.2.185", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029379316"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-5193(73)90088-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033406266"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.85.13.4775", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037044690"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02115575", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037938694", 
          "https://doi.org/10.1007/bf02115575"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02115575", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037938694", 
          "https://doi.org/10.1007/bf02115575"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02602921", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038119332", 
          "https://doi.org/10.1007/bf02602921"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02602921", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038119332", 
          "https://doi.org/10.1007/bf02602921"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02100074", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044484378", 
          "https://doi.org/10.1007/bf02100074"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02100074", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044484378", 
          "https://doi.org/10.1007/bf02100074"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/b978-0-08-094829-4.50010-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051288615"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1095-8312.1981.tb01847.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053627522"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/412935", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058703986"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tpami.1983.4767409", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061741968"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.134.3489.1501", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062476600"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2412182", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069920655"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2412604", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069921007"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1993-08", 
    "datePublishedReg": "1993-08-01", 
    "description": "We apply the Minimal Length Encoding Principle to formalize inference about the evolution of macromolecular sequences. The Principle is shown to imply a combination of Weighted Parsimony and Compatibility methods that have long been used by biologists because of their good practical performance. The background assumptions are expressed as an encoding scheme for the observed data and as heuristic rules for selection of diagnostic positions in the sequences. The Principle was applied to discover new subfamilies of Alu sequences, the most numerous family of repetitive DNA sequences in the human genome.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1023/a:1022871401069", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1125588", 
        "issn": [
          "0885-6125", 
          "1573-0565"
        ], 
        "name": "Machine Learning", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1-3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "12"
      }
    ], 
    "name": "Discovery by Minimal Length Encoding: A Case Study in Molecular Evolution", 
    "pagination": "69-87", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "33716d360b6b63dd97a2f0cdb7b968d4aadd3a1b443ccc379c5d335c48b6892a"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1023/a:1022871401069"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1010798096"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1023/a:1022871401069", 
      "https://app.dimensions.ai/details/publication/pub.1010798096"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T01:05", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8697_00000503.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1023%2FA%3A1022871401069"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1023/a:1022871401069'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1023/a:1022871401069'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1023/a:1022871401069'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1023/a:1022871401069'


 

This table displays all metadata directly associated to this object as RDF triples.

160 TRIPLES      21 PREDICATES      55 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1023/a:1022871401069 schema:about anzsrc-for:06
2 anzsrc-for:0604
3 schema:author Nacd4f45600074d889a7592f0b2b30875
4 schema:citation sg:pub.10.1007/bf00114265
5 sg:pub.10.1007/bf02099850
6 sg:pub.10.1007/bf02100074
7 sg:pub.10.1007/bf02115575
8 sg:pub.10.1007/bf02458580
9 sg:pub.10.1007/bf02459508
10 sg:pub.10.1007/bf02515383
11 sg:pub.10.1007/bf02602921
12 https://doi.org/10.1016/0004-3702(89)90046-5
13 https://doi.org/10.1016/0022-2836(81)90087-5
14 https://doi.org/10.1016/0022-5193(68)90128-8
15 https://doi.org/10.1016/0022-5193(73)90088-x
16 https://doi.org/10.1016/0076-6879(90)83041-7
17 https://doi.org/10.1016/b978-0-08-094829-4.50010-6
18 https://doi.org/10.1016/b978-1-55860-213-7.50036-5
19 https://doi.org/10.1016/s0019-9958(64)90223-2
20 https://doi.org/10.1073/pnas.83.11.3875
21 https://doi.org/10.1073/pnas.85.13.4770
22 https://doi.org/10.1073/pnas.85.13.4775
23 https://doi.org/10.1080/00207166808803030
24 https://doi.org/10.1086/412935
25 https://doi.org/10.1093/comjnl/11.2.185
26 https://doi.org/10.1109/tpami.1983.4767409
27 https://doi.org/10.1111/j.1095-8312.1981.tb01847.x
28 https://doi.org/10.1126/science.134.3489.1501
29 https://doi.org/10.1145/321356.321363
30 https://doi.org/10.2307/2412182
31 https://doi.org/10.2307/2412604
32 schema:datePublished 1993-08
33 schema:datePublishedReg 1993-08-01
34 schema:description We apply the Minimal Length Encoding Principle to formalize inference about the evolution of macromolecular sequences. The Principle is shown to imply a combination of Weighted Parsimony and Compatibility methods that have long been used by biologists because of their good practical performance. The background assumptions are expressed as an encoding scheme for the observed data and as heuristic rules for selection of diagnostic positions in the sequences. The Principle was applied to discover new subfamilies of Alu sequences, the most numerous family of repetitive DNA sequences in the human genome.
35 schema:genre research_article
36 schema:inLanguage en
37 schema:isAccessibleForFree true
38 schema:isPartOf N8cfd9ae986ba4c248d8cd28b3133ac78
39 Nf809fb4a46cd48b7a4a63a63db94ad9c
40 sg:journal.1125588
41 schema:name Discovery by Minimal Length Encoding: A Case Study in Molecular Evolution
42 schema:pagination 69-87
43 schema:productId N052075406f9a43fb90d46ea1609b8643
44 N1912a2150b054ce38a900f90858b3bdc
45 Ndd7173d0620f4200a1475803d0fa5b12
46 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010798096
47 https://doi.org/10.1023/a:1022871401069
48 schema:sdDatePublished 2019-04-11T01:05
49 schema:sdLicense https://scigraph.springernature.com/explorer/license/
50 schema:sdPublisher Nb0c29f97cb95479ebf3c75daba5735d0
51 schema:url http://link.springer.com/10.1023%2FA%3A1022871401069
52 sgo:license sg:explorer/license/
53 sgo:sdDataset articles
54 rdf:type schema:ScholarlyArticle
55 N052075406f9a43fb90d46ea1609b8643 schema:name doi
56 schema:value 10.1023/a:1022871401069
57 rdf:type schema:PropertyValue
58 N1912a2150b054ce38a900f90858b3bdc schema:name readcube_id
59 schema:value 33716d360b6b63dd97a2f0cdb7b968d4aadd3a1b443ccc379c5d335c48b6892a
60 rdf:type schema:PropertyValue
61 N2abd0abe40d94c8ea924bad06e2ba812 rdf:first sg:person.0663101366.99
62 rdf:rest rdf:nil
63 N8cfd9ae986ba4c248d8cd28b3133ac78 schema:volumeNumber 12
64 rdf:type schema:PublicationVolume
65 Nacd4f45600074d889a7592f0b2b30875 rdf:first sg:person.0771403770.00
66 rdf:rest N2abd0abe40d94c8ea924bad06e2ba812
67 Nb0c29f97cb95479ebf3c75daba5735d0 schema:name Springer Nature - SN SciGraph project
68 rdf:type schema:Organization
69 Ndd7173d0620f4200a1475803d0fa5b12 schema:name dimensions_id
70 schema:value pub.1010798096
71 rdf:type schema:PropertyValue
72 Nf809fb4a46cd48b7a4a63a63db94ad9c schema:issueNumber 1-3
73 rdf:type schema:PublicationIssue
74 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
75 schema:name Biological Sciences
76 rdf:type schema:DefinedTerm
77 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
78 schema:name Genetics
79 rdf:type schema:DefinedTerm
80 sg:journal.1125588 schema:issn 0885-6125
81 1573-0565
82 schema:name Machine Learning
83 rdf:type schema:Periodical
84 sg:person.0663101366.99 schema:affiliation https://www.grid.ac/institutes/grid.4391.f
85 schema:familyName Jurka
86 schema:givenName Jerzy
87 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0663101366.99
88 rdf:type schema:Person
89 sg:person.0771403770.00 schema:affiliation https://www.grid.ac/institutes/grid.4391.f
90 schema:familyName Milosavljević
91 schema:givenName Aleksandar
92 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0771403770.00
93 rdf:type schema:Person
94 sg:pub.10.1007/bf00114265 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017000685
95 https://doi.org/10.1007/bf00114265
96 rdf:type schema:CreativeWork
97 sg:pub.10.1007/bf02099850 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016386165
98 https://doi.org/10.1007/bf02099850
99 rdf:type schema:CreativeWork
100 sg:pub.10.1007/bf02100074 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044484378
101 https://doi.org/10.1007/bf02100074
102 rdf:type schema:CreativeWork
103 sg:pub.10.1007/bf02115575 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037938694
104 https://doi.org/10.1007/bf02115575
105 rdf:type schema:CreativeWork
106 sg:pub.10.1007/bf02458580 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001931403
107 https://doi.org/10.1007/bf02458580
108 rdf:type schema:CreativeWork
109 sg:pub.10.1007/bf02459508 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015439535
110 https://doi.org/10.1007/bf02459508
111 rdf:type schema:CreativeWork
112 sg:pub.10.1007/bf02515383 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014911372
113 https://doi.org/10.1007/bf02515383
114 rdf:type schema:CreativeWork
115 sg:pub.10.1007/bf02602921 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038119332
116 https://doi.org/10.1007/bf02602921
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1016/0004-3702(89)90046-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004978830
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1016/0022-2836(81)90087-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024589839
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1016/0022-5193(68)90128-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002749338
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1016/0022-5193(73)90088-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1033406266
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1016/0076-6879(90)83041-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021608205
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1016/b978-0-08-094829-4.50010-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051288615
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1016/b978-1-55860-213-7.50036-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010945436
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1016/s0019-9958(64)90223-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027287787
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1073/pnas.83.11.3875 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017670206
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1073/pnas.85.13.4770 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028476445
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1073/pnas.85.13.4775 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037044690
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1080/00207166808803030 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025972892
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1086/412935 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058703986
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1093/comjnl/11.2.185 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029379316
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1109/tpami.1983.4767409 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061741968
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1111/j.1095-8312.1981.tb01847.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1053627522
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1126/science.134.3489.1501 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062476600
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1145/321356.321363 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012160236
153 rdf:type schema:CreativeWork
154 https://doi.org/10.2307/2412182 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069920655
155 rdf:type schema:CreativeWork
156 https://doi.org/10.2307/2412604 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069921007
157 rdf:type schema:CreativeWork
158 https://www.grid.ac/institutes/grid.4391.f schema:alternateName Oregon State University
159 schema:name Linus Pauling Institute of Science and Medicine, 440 Page Mill Rd., 94306, Palo Alto, CA
160 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...