Screening of an Electric Field and the Quasi-Static Capacitance of an Induced Charge in Semiconductors with Hopping Conductivity View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2002-10

AUTHORS

N. A. Poklonskii, S. A. Vyrko

ABSTRACT

Expressions for the screening length of an external electrostatic field in a crystalline semiconductor are derived in the Debye–Hückel and Mott–Schottky approximations taking into account electron (hole) hopping via hydrogen-like donors (acceptors). The feasibility of determining the Debye–Hückel screening length from measurements of a quasi-static capacitance with low and high degrees of basic dopant compensation has been demonstrated even in a strong field, that is, in the Mott–Schottky approximation. To measure the capacitance, the electric signal frequency must be much less than the average frequency of electron hopping via donors. More... »

PAGES

1001-1007

Identifiers

URI

http://scigraph.springernature.com/pub.10.1023/a:1022867001332

DOI

http://dx.doi.org/10.1023/a:1022867001332

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1037012369


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Byelorussian State University, Russia", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Byelorussian State University, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Poklonskii", 
        "givenName": "N. A.", 
        "id": "sg:person.015656403561.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015656403561.19"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Byelorussian State University, Russia", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Byelorussian State University, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vyrko", 
        "givenName": "S. A.", 
        "id": "sg:person.0742524034.73", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0742524034.73"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2002-10", 
    "datePublishedReg": "2002-10-01", 
    "description": "Expressions for the screening length of an external electrostatic field in a crystalline semiconductor are derived in the Debye\u2013H\u00fcckel and Mott\u2013Schottky approximations taking into account electron (hole) hopping via hydrogen-like donors (acceptors). The feasibility of determining the Debye\u2013H\u00fcckel screening length from measurements of a quasi-static capacitance with low and high degrees of basic dopant compensation has been demonstrated even in a strong field, that is, in the Mott\u2013Schottky approximation. To measure the capacitance, the electric signal frequency must be much less than the average frequency of electron hopping via donors.", 
    "genre": "article", 
    "id": "sg:pub.10.1023/a:1022867001332", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1313824", 
        "issn": [
          "1064-8887", 
          "1573-9228"
        ], 
        "name": "Russian Physics Journal", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "10", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "45"
      }
    ], 
    "keywords": [
      "Mott\u2013Schottky approximation", 
      "quasi-static capacitance", 
      "electric signal frequency", 
      "hydrogen-like donors", 
      "Debye-H\u00fcckel", 
      "external electrostatic field", 
      "account electron", 
      "electric field", 
      "strong fields", 
      "crystalline semiconductors", 
      "electrostatic field", 
      "induced charge", 
      "capacitance", 
      "screening length", 
      "dopant compensation", 
      "signal frequency", 
      "semiconductors", 
      "electrons", 
      "hopping conductivity", 
      "field", 
      "conductivity", 
      "approximation", 
      "charge", 
      "feasibility", 
      "measurements", 
      "frequency", 
      "compensation", 
      "length", 
      "high degree", 
      "average frequency", 
      "degree", 
      "donors", 
      "expression", 
      "basic dopant compensation"
    ], 
    "name": "Screening of an Electric Field and the Quasi-Static Capacitance of an Induced Charge in Semiconductors with Hopping Conductivity", 
    "pagination": "1001-1007", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1037012369"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1023/a:1022867001332"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1023/a:1022867001332", 
      "https://app.dimensions.ai/details/publication/pub.1037012369"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-11-01T18:05", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/article/article_359.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1023/a:1022867001332"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1023/a:1022867001332'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1023/a:1022867001332'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1023/a:1022867001332'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1023/a:1022867001332'


 

This table displays all metadata directly associated to this object as RDF triples.

99 TRIPLES      21 PREDICATES      60 URIs      52 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1023/a:1022867001332 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author N84f568745f9d4b2e94247b8248f51d29
4 schema:datePublished 2002-10
5 schema:datePublishedReg 2002-10-01
6 schema:description Expressions for the screening length of an external electrostatic field in a crystalline semiconductor are derived in the Debye–Hückel and Mott–Schottky approximations taking into account electron (hole) hopping via hydrogen-like donors (acceptors). The feasibility of determining the Debye–Hückel screening length from measurements of a quasi-static capacitance with low and high degrees of basic dopant compensation has been demonstrated even in a strong field, that is, in the Mott–Schottky approximation. To measure the capacitance, the electric signal frequency must be much less than the average frequency of electron hopping via donors.
7 schema:genre article
8 schema:inLanguage en
9 schema:isAccessibleForFree false
10 schema:isPartOf N673b253883ce4c3980c92412b6c40812
11 Nc082102af9b94ba982050cc2a8cc8d63
12 sg:journal.1313824
13 schema:keywords Debye-Hückel
14 Mott–Schottky approximation
15 account electron
16 approximation
17 average frequency
18 basic dopant compensation
19 capacitance
20 charge
21 compensation
22 conductivity
23 crystalline semiconductors
24 degree
25 donors
26 dopant compensation
27 electric field
28 electric signal frequency
29 electrons
30 electrostatic field
31 expression
32 external electrostatic field
33 feasibility
34 field
35 frequency
36 high degree
37 hopping conductivity
38 hydrogen-like donors
39 induced charge
40 length
41 measurements
42 quasi-static capacitance
43 screening length
44 semiconductors
45 signal frequency
46 strong fields
47 schema:name Screening of an Electric Field and the Quasi-Static Capacitance of an Induced Charge in Semiconductors with Hopping Conductivity
48 schema:pagination 1001-1007
49 schema:productId N39a9d95cdfad4c7fa7b7734285ddbda4
50 N449faa1e7c8341ae9b5c10ae9c8a83ff
51 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037012369
52 https://doi.org/10.1023/a:1022867001332
53 schema:sdDatePublished 2021-11-01T18:05
54 schema:sdLicense https://scigraph.springernature.com/explorer/license/
55 schema:sdPublisher N37c4015982df49dc800610659927b5f3
56 schema:url https://doi.org/10.1023/a:1022867001332
57 sgo:license sg:explorer/license/
58 sgo:sdDataset articles
59 rdf:type schema:ScholarlyArticle
60 N37c4015982df49dc800610659927b5f3 schema:name Springer Nature - SN SciGraph project
61 rdf:type schema:Organization
62 N39a9d95cdfad4c7fa7b7734285ddbda4 schema:name dimensions_id
63 schema:value pub.1037012369
64 rdf:type schema:PropertyValue
65 N449faa1e7c8341ae9b5c10ae9c8a83ff schema:name doi
66 schema:value 10.1023/a:1022867001332
67 rdf:type schema:PropertyValue
68 N673b253883ce4c3980c92412b6c40812 schema:issueNumber 10
69 rdf:type schema:PublicationIssue
70 N84f568745f9d4b2e94247b8248f51d29 rdf:first sg:person.015656403561.19
71 rdf:rest Nbd03a9d4f77a4e11adbd48048135f38b
72 Nbd03a9d4f77a4e11adbd48048135f38b rdf:first sg:person.0742524034.73
73 rdf:rest rdf:nil
74 Nc082102af9b94ba982050cc2a8cc8d63 schema:volumeNumber 45
75 rdf:type schema:PublicationVolume
76 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
77 schema:name Engineering
78 rdf:type schema:DefinedTerm
79 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
80 schema:name Materials Engineering
81 rdf:type schema:DefinedTerm
82 sg:journal.1313824 schema:issn 1064-8887
83 1573-9228
84 schema:name Russian Physics Journal
85 schema:publisher Springer Nature
86 rdf:type schema:Periodical
87 sg:person.015656403561.19 schema:affiliation grid-institutes:None
88 schema:familyName Poklonskii
89 schema:givenName N. A.
90 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015656403561.19
91 rdf:type schema:Person
92 sg:person.0742524034.73 schema:affiliation grid-institutes:None
93 schema:familyName Vyrko
94 schema:givenName S. A.
95 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0742524034.73
96 rdf:type schema:Person
97 grid-institutes:None schema:alternateName Byelorussian State University, Russia
98 schema:name Byelorussian State University, Russia
99 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...