Use of M1–M5 Muscarinic Receptor Knockout Mice as Novel Tools to Delineate the Physiological Roles of the Muscarinic Cholinergic System View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2003-04

AUTHORS

Frank P. Bymaster, David L. McKinzie, Christian C. Felder, Jürgen Wess

ABSTRACT

In this review we report recent findings on the physiological role of the five known muscarinic acetylcholine receptors (mAChRs) as shown by gene targeting technology. Using knockout mice for each mAChRs subtype, the role of mAChRs subtypes in a number of physiological functions was confirmed and new activities were discovered. The M1 mAChRs modulate neurotransmitter signaling in cortex and hippocampus. The M3 mAChRs are involved in exocrine gland secretion, smooth muscle contractility, pupil dilation, food intake, and weight gain. The role of the M5 mAChRs involves modulation of central dopamine function and the tone of cerebral blood vessels. mAChRs of the M2 subtype mediate muscarinic agonist-induced bradycardia, tremor, hypothermia, and autoinhibition of release in several brain regions. M4 mAChRs modulate dopamine activity in motor tracts and act as inhibitory autoreceptors in striatum. Thus, as elucidated by gene targeting technology, mAChRs have widespread and manifold functions in the periphery and brain. More... »

PAGES

437-442

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1023/a:1022844517200

DOI

http://dx.doi.org/10.1023/a:1022844517200

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1028921874

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/12675128


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1109", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Neurosciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adenylyl Cyclases", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Animals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mice", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mice, Knockout", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Phosphatidylinositols", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Receptors, Muscarinic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Signal Transduction", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Lilly Research Laboratories, Eli Lilly and Company, 46285, Indianapolis, Indiana", 
          "id": "http://www.grid.ac/institutes/grid.417540.3", 
          "name": [
            "Lilly Research Laboratories, Eli Lilly and Company, 46285, Indianapolis, Indiana"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bymaster", 
        "givenName": "Frank P.", 
        "id": "sg:person.0666032073.99", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0666032073.99"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Lilly Research Laboratories, Eli Lilly and Company, 46285, Indianapolis, Indiana", 
          "id": "http://www.grid.ac/institutes/grid.417540.3", 
          "name": [
            "Lilly Research Laboratories, Eli Lilly and Company, 46285, Indianapolis, Indiana"
          ], 
          "type": "Organization"
        }, 
        "familyName": "McKinzie", 
        "givenName": "David L.", 
        "id": "sg:person.0763314514.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0763314514.05"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Lilly Research Laboratories, Eli Lilly and Company, 46285, Indianapolis, Indiana", 
          "id": "http://www.grid.ac/institutes/grid.417540.3", 
          "name": [
            "Lilly Research Laboratories, Eli Lilly and Company, 46285, Indianapolis, Indiana"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Felder", 
        "givenName": "Christian C.", 
        "id": "sg:person.015730457217.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015730457217.30"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, 20892, Bethesda, Maryland", 
          "id": "http://www.grid.ac/institutes/grid.419635.c", 
          "name": [
            "Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, 20892, Bethesda, Maryland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wess", 
        "givenName": "J\u00fcrgen", 
        "id": "sg:person.01065566601.02", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01065566601.02"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.2165/00023210-199503060-00006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024824691", 
          "https://doi.org/10.2165/00023210-199503060-00006"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35065604", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032034920", 
          "https://doi.org/10.1038/35065604"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00169040", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014709406", 
          "https://doi.org/10.1007/bf00169040"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2003-04", 
    "datePublishedReg": "2003-04-01", 
    "description": "In this review we report recent findings on the physiological role of the five known muscarinic acetylcholine receptors (mAChRs) as shown by gene targeting technology. Using knockout mice for each mAChRs subtype, the role of mAChRs subtypes in a number of physiological functions was confirmed and new activities were discovered. The M1 mAChRs modulate neurotransmitter signaling in cortex and hippocampus. The M3 mAChRs are involved in exocrine gland secretion, smooth muscle contractility, pupil dilation, food intake, and weight gain. The role of the M5 mAChRs involves modulation of central dopamine function and the tone of cerebral blood vessels. mAChRs of the M2 subtype mediate muscarinic agonist-induced bradycardia, tremor, hypothermia, and autoinhibition of release in several brain regions. M4 mAChRs modulate dopamine activity in motor tracts and act as inhibitory autoreceptors in striatum. Thus, as elucidated by gene targeting technology, mAChRs have widespread and manifold functions in the periphery and brain.", 
    "genre": "article", 
    "id": "sg:pub.10.1023/a:1022844517200", 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2716287", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1085962", 
        "issn": [
          "0364-3190", 
          "1573-6903"
        ], 
        "name": "Neurochemical Research", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3-4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "28"
      }
    ], 
    "keywords": [
      "mAChR subtypes", 
      "knockout mice", 
      "muscarinic receptor knockout mice", 
      "central dopamine function", 
      "receptor knockout mice", 
      "muscarinic cholinergic system", 
      "muscarinic acetylcholine receptors", 
      "smooth muscle contractility", 
      "cerebral blood vessels", 
      "physiological role", 
      "M4 mAChR", 
      "M1 mAChR", 
      "inhibitory autoreceptors", 
      "M3 mAChR", 
      "motor tracts", 
      "cholinergic system", 
      "M5 mAChRs", 
      "muscle contractility", 
      "food intake", 
      "mAChRs", 
      "dopamine function", 
      "acetylcholine receptors", 
      "dopamine activity", 
      "brain regions", 
      "weight gain", 
      "exocrine gland secretions", 
      "blood vessels", 
      "subtypes", 
      "mice", 
      "pupil dilation", 
      "recent findings", 
      "physiological functions", 
      "gland secretion", 
      "autoreceptors", 
      "bradycardia", 
      "hypothermia", 
      "hippocampus", 
      "striatum", 
      "contractility", 
      "cortex", 
      "neurotransmitters", 
      "intake", 
      "tract", 
      "role", 
      "secretion", 
      "brain", 
      "novel tool", 
      "receptors", 
      "tremor", 
      "dilation", 
      "activity", 
      "genes", 
      "tone", 
      "vessels", 
      "review", 
      "function", 
      "findings", 
      "release", 
      "modulation", 
      "manifold functions", 
      "periphery", 
      "use", 
      "autoinhibition", 
      "number", 
      "new activities", 
      "gain", 
      "tool", 
      "acts", 
      "region", 
      "system", 
      "technology"
    ], 
    "name": "Use of M1\u2013M5 Muscarinic Receptor Knockout Mice as Novel Tools to Delineate the Physiological Roles of the Muscarinic Cholinergic System", 
    "pagination": "437-442", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1028921874"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1023/a:1022844517200"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "12675128"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1023/a:1022844517200", 
      "https://app.dimensions.ai/details/publication/pub.1028921874"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-09-02T15:50", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_377.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1023/a:1022844517200"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1023/a:1022844517200'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1023/a:1022844517200'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1023/a:1022844517200'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1023/a:1022844517200'


 

This table displays all metadata directly associated to this object as RDF triples.

198 TRIPLES      21 PREDICATES      107 URIs      96 LITERALS      14 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1023/a:1022844517200 schema:about N3921c93cb947451e91fc1886780bacdf
2 N4b51160f7f6640d4b779644aa3366888
3 N63d813ea1b38443a9ce8e29025443641
4 N8ef399ae8a8d44949cc4debf530a0149
5 Nde037b7417974d6590c8435e2e379ab6
6 Ndf0db88c51f84c01994656223bbb0d86
7 Ne45030a058fa4624aaef0196bf7b42e7
8 anzsrc-for:11
9 anzsrc-for:1109
10 schema:author N7d3c626e246b4a6597a26ff11df63862
11 schema:citation sg:pub.10.1007/bf00169040
12 sg:pub.10.1038/35065604
13 sg:pub.10.2165/00023210-199503060-00006
14 schema:datePublished 2003-04
15 schema:datePublishedReg 2003-04-01
16 schema:description In this review we report recent findings on the physiological role of the five known muscarinic acetylcholine receptors (mAChRs) as shown by gene targeting technology. Using knockout mice for each mAChRs subtype, the role of mAChRs subtypes in a number of physiological functions was confirmed and new activities were discovered. The M1 mAChRs modulate neurotransmitter signaling in cortex and hippocampus. The M3 mAChRs are involved in exocrine gland secretion, smooth muscle contractility, pupil dilation, food intake, and weight gain. The role of the M5 mAChRs involves modulation of central dopamine function and the tone of cerebral blood vessels. mAChRs of the M2 subtype mediate muscarinic agonist-induced bradycardia, tremor, hypothermia, and autoinhibition of release in several brain regions. M4 mAChRs modulate dopamine activity in motor tracts and act as inhibitory autoreceptors in striatum. Thus, as elucidated by gene targeting technology, mAChRs have widespread and manifold functions in the periphery and brain.
17 schema:genre article
18 schema:isAccessibleForFree false
19 schema:isPartOf N1c40e6acf0014672b41ea730f08dff79
20 N3ba00960dfde47c7ab78f823becf651b
21 sg:journal.1085962
22 schema:keywords M1 mAChR
23 M3 mAChR
24 M4 mAChR
25 M5 mAChRs
26 acetylcholine receptors
27 activity
28 acts
29 autoinhibition
30 autoreceptors
31 blood vessels
32 bradycardia
33 brain
34 brain regions
35 central dopamine function
36 cerebral blood vessels
37 cholinergic system
38 contractility
39 cortex
40 dilation
41 dopamine activity
42 dopamine function
43 exocrine gland secretions
44 findings
45 food intake
46 function
47 gain
48 genes
49 gland secretion
50 hippocampus
51 hypothermia
52 inhibitory autoreceptors
53 intake
54 knockout mice
55 mAChR subtypes
56 mAChRs
57 manifold functions
58 mice
59 modulation
60 motor tracts
61 muscarinic acetylcholine receptors
62 muscarinic cholinergic system
63 muscarinic receptor knockout mice
64 muscle contractility
65 neurotransmitters
66 new activities
67 novel tool
68 number
69 periphery
70 physiological functions
71 physiological role
72 pupil dilation
73 recent findings
74 receptor knockout mice
75 receptors
76 region
77 release
78 review
79 role
80 secretion
81 smooth muscle contractility
82 striatum
83 subtypes
84 system
85 technology
86 tone
87 tool
88 tract
89 tremor
90 use
91 vessels
92 weight gain
93 schema:name Use of M1–M5 Muscarinic Receptor Knockout Mice as Novel Tools to Delineate the Physiological Roles of the Muscarinic Cholinergic System
94 schema:pagination 437-442
95 schema:productId N7ceb221384504b07a4e19c28408524f1
96 Nce748566d08f4e8e93f661c1e718cd14
97 Ne76ca2b2a22448c2acdc76bd595dbca4
98 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028921874
99 https://doi.org/10.1023/a:1022844517200
100 schema:sdDatePublished 2022-09-02T15:50
101 schema:sdLicense https://scigraph.springernature.com/explorer/license/
102 schema:sdPublisher N6363dd0dc0f24af6b4cb4ac42701100f
103 schema:url https://doi.org/10.1023/a:1022844517200
104 sgo:license sg:explorer/license/
105 sgo:sdDataset articles
106 rdf:type schema:ScholarlyArticle
107 N1c40e6acf0014672b41ea730f08dff79 schema:issueNumber 3-4
108 rdf:type schema:PublicationIssue
109 N21f88a5872ed47fe80162d291070da99 rdf:first sg:person.015730457217.30
110 rdf:rest N9c5553adc6324b5bbe3e3ff9181eb4ba
111 N3921c93cb947451e91fc1886780bacdf schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
112 schema:name Phosphatidylinositols
113 rdf:type schema:DefinedTerm
114 N3ba00960dfde47c7ab78f823becf651b schema:volumeNumber 28
115 rdf:type schema:PublicationVolume
116 N4b51160f7f6640d4b779644aa3366888 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
117 schema:name Receptors, Muscarinic
118 rdf:type schema:DefinedTerm
119 N6363dd0dc0f24af6b4cb4ac42701100f schema:name Springer Nature - SN SciGraph project
120 rdf:type schema:Organization
121 N63d813ea1b38443a9ce8e29025443641 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
122 schema:name Mice
123 rdf:type schema:DefinedTerm
124 N7ceb221384504b07a4e19c28408524f1 schema:name pubmed_id
125 schema:value 12675128
126 rdf:type schema:PropertyValue
127 N7d3c626e246b4a6597a26ff11df63862 rdf:first sg:person.0666032073.99
128 rdf:rest N8a5a3d7ea5cc49beb001966a8ceb9593
129 N8a5a3d7ea5cc49beb001966a8ceb9593 rdf:first sg:person.0763314514.05
130 rdf:rest N21f88a5872ed47fe80162d291070da99
131 N8ef399ae8a8d44949cc4debf530a0149 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
132 schema:name Signal Transduction
133 rdf:type schema:DefinedTerm
134 N9c5553adc6324b5bbe3e3ff9181eb4ba rdf:first sg:person.01065566601.02
135 rdf:rest rdf:nil
136 Nce748566d08f4e8e93f661c1e718cd14 schema:name doi
137 schema:value 10.1023/a:1022844517200
138 rdf:type schema:PropertyValue
139 Nde037b7417974d6590c8435e2e379ab6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
140 schema:name Animals
141 rdf:type schema:DefinedTerm
142 Ndf0db88c51f84c01994656223bbb0d86 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
143 schema:name Adenylyl Cyclases
144 rdf:type schema:DefinedTerm
145 Ne45030a058fa4624aaef0196bf7b42e7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
146 schema:name Mice, Knockout
147 rdf:type schema:DefinedTerm
148 Ne76ca2b2a22448c2acdc76bd595dbca4 schema:name dimensions_id
149 schema:value pub.1028921874
150 rdf:type schema:PropertyValue
151 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
152 schema:name Medical and Health Sciences
153 rdf:type schema:DefinedTerm
154 anzsrc-for:1109 schema:inDefinedTermSet anzsrc-for:
155 schema:name Neurosciences
156 rdf:type schema:DefinedTerm
157 sg:grant.2716287 http://pending.schema.org/fundedItem sg:pub.10.1023/a:1022844517200
158 rdf:type schema:MonetaryGrant
159 sg:journal.1085962 schema:issn 0364-3190
160 1573-6903
161 schema:name Neurochemical Research
162 schema:publisher Springer Nature
163 rdf:type schema:Periodical
164 sg:person.01065566601.02 schema:affiliation grid-institutes:grid.419635.c
165 schema:familyName Wess
166 schema:givenName Jürgen
167 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01065566601.02
168 rdf:type schema:Person
169 sg:person.015730457217.30 schema:affiliation grid-institutes:grid.417540.3
170 schema:familyName Felder
171 schema:givenName Christian C.
172 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015730457217.30
173 rdf:type schema:Person
174 sg:person.0666032073.99 schema:affiliation grid-institutes:grid.417540.3
175 schema:familyName Bymaster
176 schema:givenName Frank P.
177 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0666032073.99
178 rdf:type schema:Person
179 sg:person.0763314514.05 schema:affiliation grid-institutes:grid.417540.3
180 schema:familyName McKinzie
181 schema:givenName David L.
182 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0763314514.05
183 rdf:type schema:Person
184 sg:pub.10.1007/bf00169040 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014709406
185 https://doi.org/10.1007/bf00169040
186 rdf:type schema:CreativeWork
187 sg:pub.10.1038/35065604 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032034920
188 https://doi.org/10.1038/35065604
189 rdf:type schema:CreativeWork
190 sg:pub.10.2165/00023210-199503060-00006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024824691
191 https://doi.org/10.2165/00023210-199503060-00006
192 rdf:type schema:CreativeWork
193 grid-institutes:grid.417540.3 schema:alternateName Lilly Research Laboratories, Eli Lilly and Company, 46285, Indianapolis, Indiana
194 schema:name Lilly Research Laboratories, Eli Lilly and Company, 46285, Indianapolis, Indiana
195 rdf:type schema:Organization
196 grid-institutes:grid.419635.c schema:alternateName Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, 20892, Bethesda, Maryland
197 schema:name Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, 20892, Bethesda, Maryland
198 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...