Incremental Induction of Decision Trees View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

1989-11

AUTHORS

Paul E. Utgoff

ABSTRACT

This article presents an incremental algorithm for inducing decision trees equivalent to those formed by Quinlan's nonincremental ID3 algorithm, given the same training instances. The new algorithm, named ID5R, lets one apply the ID3 induction process to learning tasks in which training instances are presented serially. Although the basic tree-building algorithms differ only in how the decision trees are constructed, experiments show that incremental training makes it possible to select training instances more carefully, which can result in smaller decision trees. The ID3 algorithm and its variants are compared in terms of theoretical complexity and empirical behavior. More... »

PAGES

161-186

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1023/a:1022699900025

DOI

http://dx.doi.org/10.1023/a:1022699900025

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1021865543


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1702", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Cognitive Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/17", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Psychology and Cognitive Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Massachusetts Amherst", 
          "id": "https://www.grid.ac/institutes/grid.266683.f", 
          "name": [
            "Department of Computer and Information Science, University of Massachusetts, 01003, Amherst, MA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Utgoff", 
        "givenName": "Paul E.", 
        "id": "sg:person.0731056434.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0731056434.13"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-3-662-12405-5_4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004370089", 
          "https://doi.org/10.1007/978-3-662-12405-5_4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0004-3702(80)90038-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009060400"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0004-3702(80)90038-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009060400"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-662-12405-5_15", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016127667", 
          "https://doi.org/10.1007/978-3-662-12405-5_15"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00114265", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017000685", 
          "https://doi.org/10.1007/bf00114265"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/356893.356898", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017636540"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00116251", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019422208", 
          "https://doi.org/10.1007/bf00116251"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/b978-0-934613-64-4.50019-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024782177"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/b978-0-934613-64-4.50017-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024961577"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00116895", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029305571", 
          "https://doi.org/10.1007/bf00116895"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0304-3975(87)90130-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030180831"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/42372.42377", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031543264"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/b978-1-55860-036-2.50092-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032912061"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00058679", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049788334", 
          "https://doi.org/10.1007/bf00058679"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/j.1538-7305.1948.tb01338.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052867467"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tit.1962.1057691", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061645795"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1080032533", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.21236/ada042721", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091990460"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1989-11", 
    "datePublishedReg": "1989-11-01", 
    "description": "This article presents an incremental algorithm for inducing decision trees equivalent to those formed by Quinlan's nonincremental ID3 algorithm, given the same training instances. The new algorithm, named ID5R, lets one apply the ID3 induction process to learning tasks in which training instances are presented serially. Although the basic tree-building algorithms differ only in how the decision trees are constructed, experiments show that incremental training makes it possible to select training instances more carefully, which can result in smaller decision trees. The ID3 algorithm and its variants are compared in terms of theoretical complexity and empirical behavior.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1023/a:1022699900025", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1125588", 
        "issn": [
          "0885-6125", 
          "1573-0565"
        ], 
        "name": "Machine Learning", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "4"
      }
    ], 
    "name": "Incremental Induction of Decision Trees", 
    "pagination": "161-186", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "682c635944756b94fa960765808b1e7f49557557f168dc4b25c76b13931b7329"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1023/a:1022699900025"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1021865543"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1023/a:1022699900025", 
      "https://app.dimensions.ai/details/publication/pub.1021865543"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T22:30", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8690_00000505.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1023%2FA%3A1022699900025"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1023/a:1022699900025'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1023/a:1022699900025'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1023/a:1022699900025'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1023/a:1022699900025'


 

This table displays all metadata directly associated to this object as RDF triples.

117 TRIPLES      21 PREDICATES      44 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1023/a:1022699900025 schema:about anzsrc-for:17
2 anzsrc-for:1702
3 schema:author Ncc0bf4cb0397430e9f50678cdeccfcc2
4 schema:citation sg:pub.10.1007/978-3-662-12405-5_15
5 sg:pub.10.1007/978-3-662-12405-5_4
6 sg:pub.10.1007/bf00058679
7 sg:pub.10.1007/bf00114265
8 sg:pub.10.1007/bf00116251
9 sg:pub.10.1007/bf00116895
10 https://app.dimensions.ai/details/publication/pub.1080032533
11 https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
12 https://doi.org/10.1016/0004-3702(80)90038-7
13 https://doi.org/10.1016/0304-3975(87)90130-7
14 https://doi.org/10.1016/b978-0-934613-64-4.50017-7
15 https://doi.org/10.1016/b978-0-934613-64-4.50019-0
16 https://doi.org/10.1016/b978-1-55860-036-2.50092-8
17 https://doi.org/10.1109/tit.1962.1057691
18 https://doi.org/10.1145/356893.356898
19 https://doi.org/10.1145/42372.42377
20 https://doi.org/10.21236/ada042721
21 schema:datePublished 1989-11
22 schema:datePublishedReg 1989-11-01
23 schema:description This article presents an incremental algorithm for inducing decision trees equivalent to those formed by Quinlan's nonincremental ID3 algorithm, given the same training instances. The new algorithm, named ID5R, lets one apply the ID3 induction process to learning tasks in which training instances are presented serially. Although the basic tree-building algorithms differ only in how the decision trees are constructed, experiments show that incremental training makes it possible to select training instances more carefully, which can result in smaller decision trees. The ID3 algorithm and its variants are compared in terms of theoretical complexity and empirical behavior.
24 schema:genre research_article
25 schema:inLanguage en
26 schema:isAccessibleForFree true
27 schema:isPartOf N84fbdd5a9622404bb2b806ac884e8b6e
28 Naa68bd4c7a0a4288b1da9aeb0538c92e
29 sg:journal.1125588
30 schema:name Incremental Induction of Decision Trees
31 schema:pagination 161-186
32 schema:productId N4bea6f34949041668714413c7553bf3f
33 N96f74010657c4e0797e5150e98d9eb8c
34 Nae17133fa04f4cf797eaf2ad0cc97efe
35 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021865543
36 https://doi.org/10.1023/a:1022699900025
37 schema:sdDatePublished 2019-04-10T22:30
38 schema:sdLicense https://scigraph.springernature.com/explorer/license/
39 schema:sdPublisher N7a37b8f04b704fee880594fa7de9701b
40 schema:url http://link.springer.com/10.1023%2FA%3A1022699900025
41 sgo:license sg:explorer/license/
42 sgo:sdDataset articles
43 rdf:type schema:ScholarlyArticle
44 N4bea6f34949041668714413c7553bf3f schema:name readcube_id
45 schema:value 682c635944756b94fa960765808b1e7f49557557f168dc4b25c76b13931b7329
46 rdf:type schema:PropertyValue
47 N7a37b8f04b704fee880594fa7de9701b schema:name Springer Nature - SN SciGraph project
48 rdf:type schema:Organization
49 N84fbdd5a9622404bb2b806ac884e8b6e schema:volumeNumber 4
50 rdf:type schema:PublicationVolume
51 N96f74010657c4e0797e5150e98d9eb8c schema:name dimensions_id
52 schema:value pub.1021865543
53 rdf:type schema:PropertyValue
54 Naa68bd4c7a0a4288b1da9aeb0538c92e schema:issueNumber 2
55 rdf:type schema:PublicationIssue
56 Nae17133fa04f4cf797eaf2ad0cc97efe schema:name doi
57 schema:value 10.1023/a:1022699900025
58 rdf:type schema:PropertyValue
59 Ncc0bf4cb0397430e9f50678cdeccfcc2 rdf:first sg:person.0731056434.13
60 rdf:rest rdf:nil
61 anzsrc-for:17 schema:inDefinedTermSet anzsrc-for:
62 schema:name Psychology and Cognitive Sciences
63 rdf:type schema:DefinedTerm
64 anzsrc-for:1702 schema:inDefinedTermSet anzsrc-for:
65 schema:name Cognitive Sciences
66 rdf:type schema:DefinedTerm
67 sg:journal.1125588 schema:issn 0885-6125
68 1573-0565
69 schema:name Machine Learning
70 rdf:type schema:Periodical
71 sg:person.0731056434.13 schema:affiliation https://www.grid.ac/institutes/grid.266683.f
72 schema:familyName Utgoff
73 schema:givenName Paul E.
74 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0731056434.13
75 rdf:type schema:Person
76 sg:pub.10.1007/978-3-662-12405-5_15 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016127667
77 https://doi.org/10.1007/978-3-662-12405-5_15
78 rdf:type schema:CreativeWork
79 sg:pub.10.1007/978-3-662-12405-5_4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004370089
80 https://doi.org/10.1007/978-3-662-12405-5_4
81 rdf:type schema:CreativeWork
82 sg:pub.10.1007/bf00058679 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049788334
83 https://doi.org/10.1007/bf00058679
84 rdf:type schema:CreativeWork
85 sg:pub.10.1007/bf00114265 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017000685
86 https://doi.org/10.1007/bf00114265
87 rdf:type schema:CreativeWork
88 sg:pub.10.1007/bf00116251 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019422208
89 https://doi.org/10.1007/bf00116251
90 rdf:type schema:CreativeWork
91 sg:pub.10.1007/bf00116895 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029305571
92 https://doi.org/10.1007/bf00116895
93 rdf:type schema:CreativeWork
94 https://app.dimensions.ai/details/publication/pub.1080032533 schema:CreativeWork
95 https://doi.org/10.1002/j.1538-7305.1948.tb01338.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1052867467
96 rdf:type schema:CreativeWork
97 https://doi.org/10.1016/0004-3702(80)90038-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009060400
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1016/0304-3975(87)90130-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030180831
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1016/b978-0-934613-64-4.50017-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024961577
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1016/b978-0-934613-64-4.50019-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024782177
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1016/b978-1-55860-036-2.50092-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032912061
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1109/tit.1962.1057691 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061645795
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1145/356893.356898 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017636540
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1145/42372.42377 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031543264
112 rdf:type schema:CreativeWork
113 https://doi.org/10.21236/ada042721 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091990460
114 rdf:type schema:CreativeWork
115 https://www.grid.ac/institutes/grid.266683.f schema:alternateName University of Massachusetts Amherst
116 schema:name Department of Computer and Information Science, University of Massachusetts, 01003, Amherst, MA
117 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...