Ultrasonographically Assessed Carotid Intima-Media Thickness and Risk for Asymptomatic Cerebral Infarction View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1998-02

AUTHORS

M. Yamakado, I. Fukuda, H. Kiyose

ABSTRACT

Cerebral infarction (CI) is still a leading cause of death in Japan. Thus, the management of risk factors for CI as primary prevention is one of the most important tasks in multiphasic health testing and services. To determine whether carotid intima-media thickness (IMT) is a risk for CI, ultrasonographically assessed carotid IMT was compared between normal subjects (N) and subjects with asymptomatic CI (ACI) in 243 subjects who underwent human brain dry dock. ACI was found in 68 people (28.0%). Age, body mass index, and mean blood pressure were higher in ACI than in N. Also, atherogenic index was higher in ACI than in N. Carotid IMT was significantly thicker in ACI than in N. Furthermore, incidence of atherogenic plaque in ACI was significantly higher than that in N. In conclusion, not only aging, obesity, blood pressure, and plasma lipids, but also carotid IMT may be a risk for ACI. More... »

PAGES

15-18

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1023/a:1022646204200

DOI

http://dx.doi.org/10.1023/a:1022646204200

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1028166495

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/9554105


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Cardiorespiratory Medicine and Haematology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adult", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Age Factors", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aging", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Analysis of Variance", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Arteriosclerosis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Blood Pressure", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Body Mass Index", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Carotid Arteries", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Carotid Artery Diseases", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cause of Death", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cerebral Infarction", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Hyperlipidemias", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Hypertension", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Incidence", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Japan", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Lipids", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mass Screening", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Obesity", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Primary Prevention", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Risk Factors", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Tunica Intima", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Tunica Media", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Ultrasonography", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Mitsui Memorial Hospital", 
          "id": "https://www.grid.ac/institutes/grid.415980.1", 
          "name": [
            "Center for Multiphasic Health Testing and Services, Mitsui Memorial Hospital, 1 Kanda Izumicho, 101, Chiyoda-ku, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yamakado", 
        "givenName": "M.", 
        "id": "sg:person.0760572422.12", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0760572422.12"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Mitsui Memorial Hospital", 
          "id": "https://www.grid.ac/institutes/grid.415980.1", 
          "name": [
            "Center for Multiphasic Health Testing and Services, Mitsui Memorial Hospital, 1 Kanda Izumicho, 101, Chiyoda-ku, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fukuda", 
        "givenName": "I.", 
        "id": "sg:person.01105553255.63", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01105553255.63"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Mitsui Memorial Hospital", 
          "id": "https://www.grid.ac/institutes/grid.415980.1", 
          "name": [
            "Center for Multiphasic Health Testing and Services, Mitsui Memorial Hospital, 1 Kanda Izumicho, 101, Chiyoda-ku, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kiyose", 
        "givenName": "H.", 
        "id": "sg:person.01116260631.08", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01116260631.08"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1161/01.str.23.4.483", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004522667"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/01.hyp.16.6.692", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007280227"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/362801a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024417120", 
          "https://doi.org/10.1038/362801a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/01.atv.11.5.1245", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034210355"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/01.str.22.11.1379", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047127989"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/01.hyp.20.6.816", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051038076"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/01.str.26.3.380", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063341521"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1080071999", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1998-02", 
    "datePublishedReg": "1998-02-01", 
    "description": "Cerebral infarction (CI) is still a leading cause of death in Japan. Thus, the management of risk factors for CI as primary prevention is one of the most important tasks in multiphasic health testing and services. To determine whether carotid intima-media thickness (IMT) is a risk for CI, ultrasonographically assessed carotid IMT was compared between normal subjects (N) and subjects with asymptomatic CI (ACI) in 243 subjects who underwent human brain dry dock. ACI was found in 68 people (28.0%). Age, body mass index, and mean blood pressure were higher in ACI than in N. Also, atherogenic index was higher in ACI than in N. Carotid IMT was significantly thicker in ACI than in N. Furthermore, incidence of atherogenic plaque in ACI was significantly higher than that in N. In conclusion, not only aging, obesity, blood pressure, and plasma lipids, but also carotid IMT may be a risk for ACI.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1023/a:1022646204200", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1088158", 
        "issn": [
          "0148-5598", 
          "1573-689X"
        ], 
        "name": "Journal of Medical Systems", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "22"
      }
    ], 
    "name": "Ultrasonographically Assessed Carotid Intima-Media Thickness and Risk for Asymptomatic Cerebral Infarction", 
    "pagination": "15-18", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "862deec85f82fd3da8769b74cf1d604f9c1e112fff541bcb9a26950dfac873f7"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "9554105"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "7806056"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1023/a:1022646204200"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1028166495"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1023/a:1022646204200", 
      "https://app.dimensions.ai/details/publication/pub.1028166495"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T14:08", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8660_00000505.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1023%2FA%3A1022646204200"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1023/a:1022646204200'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1023/a:1022646204200'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1023/a:1022646204200'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1023/a:1022646204200'


 

This table displays all metadata directly associated to this object as RDF triples.

219 TRIPLES      21 PREDICATES      65 URIs      49 LITERALS      37 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1023/a:1022646204200 schema:about N0de05638feb548a883f741de2efe272f
2 N0e8d203ffb5746b5b9a36f9a76144b1d
3 N108f4209bb52426b942df952eb45422f
4 N17dec1b5b83345d8a9bb3193e7f0e6a0
5 N1f463095417143f8a4244a0587678404
6 N25ff60d469b74f2c9a98f8b02b73737d
7 N26de8fc89d67469eb1fcbf9a27134847
8 N2829e949c1a9430689d81137ebafa7c6
9 N497b70ab8ebd4213a4584269fd03e0d0
10 N4bce7b751b2a4fc5b513e6c595299088
11 N50bbf33c3f994fc6afc320f2f67ebdf9
12 N5e4b35ddef274eec82e7b05aa520c35b
13 N66b55b20ce614dfe92500651bacb3913
14 N6a107028ea514f76b8208d3c01f89154
15 N77b11ab9aaa3452189c5ae107c20beaa
16 N9988d59dee9d46ac98972b7fd1e5e5aa
17 Na8835f3670c54b508f23cabc2596e99b
18 Nab51d06f3edc40eab9c21acfb9bbd000
19 Nb08bb01b3cc14675b2d26e09091847a3
20 Nc00aecf53af34793a08fe3001a7cbb3d
21 Nd4ac34b5981340c8933cff280c27abd1
22 Nd6749d882cc145218760f93a0364daf0
23 Nde7182572fed4c1d8b8aeea43d46578f
24 Nde864e3358f14e09aecd2109f4d459ab
25 Ne492b80b87c34f888c0a7aed4f882fa8
26 Nf21ce78ce7b744f68139e0b945d2d6a1
27 Nf2a7e4907e314d839fe0da49f264d0ab
28 Nf7358a7bd8c54abaa190ff6c65b41e9a
29 anzsrc-for:11
30 anzsrc-for:1102
31 schema:author N227d9df484d24700b637ac7fe7b87fde
32 schema:citation sg:pub.10.1038/362801a0
33 https://app.dimensions.ai/details/publication/pub.1080071999
34 https://doi.org/10.1161/01.atv.11.5.1245
35 https://doi.org/10.1161/01.hyp.16.6.692
36 https://doi.org/10.1161/01.hyp.20.6.816
37 https://doi.org/10.1161/01.str.22.11.1379
38 https://doi.org/10.1161/01.str.23.4.483
39 https://doi.org/10.1161/01.str.26.3.380
40 schema:datePublished 1998-02
41 schema:datePublishedReg 1998-02-01
42 schema:description Cerebral infarction (CI) is still a leading cause of death in Japan. Thus, the management of risk factors for CI as primary prevention is one of the most important tasks in multiphasic health testing and services. To determine whether carotid intima-media thickness (IMT) is a risk for CI, ultrasonographically assessed carotid IMT was compared between normal subjects (N) and subjects with asymptomatic CI (ACI) in 243 subjects who underwent human brain dry dock. ACI was found in 68 people (28.0%). Age, body mass index, and mean blood pressure were higher in ACI than in N. Also, atherogenic index was higher in ACI than in N. Carotid IMT was significantly thicker in ACI than in N. Furthermore, incidence of atherogenic plaque in ACI was significantly higher than that in N. In conclusion, not only aging, obesity, blood pressure, and plasma lipids, but also carotid IMT may be a risk for ACI.
43 schema:genre research_article
44 schema:inLanguage en
45 schema:isAccessibleForFree false
46 schema:isPartOf N14448d78cf4f4090b21f292c00e7d7c4
47 N8019f86e7d0240068fcc7e2a3782aaf1
48 sg:journal.1088158
49 schema:name Ultrasonographically Assessed Carotid Intima-Media Thickness and Risk for Asymptomatic Cerebral Infarction
50 schema:pagination 15-18
51 schema:productId N41309c6cc71043bba73aad9c04d9db16
52 N6b6c1101b8bb4ed3ac46b3f2f328c764
53 Na8d805b4170444bcb987e4e96067101f
54 Nd40420bd0cdb44eaa48d4e4d89b8e1b0
55 Neeb858bdaa5947b78ff4e62b3341a8e3
56 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028166495
57 https://doi.org/10.1023/a:1022646204200
58 schema:sdDatePublished 2019-04-10T14:08
59 schema:sdLicense https://scigraph.springernature.com/explorer/license/
60 schema:sdPublisher Nf297ad7d5943438fa9d770b79132fbee
61 schema:url http://link.springer.com/10.1023%2FA%3A1022646204200
62 sgo:license sg:explorer/license/
63 sgo:sdDataset articles
64 rdf:type schema:ScholarlyArticle
65 N0de05638feb548a883f741de2efe272f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
66 schema:name Hyperlipidemias
67 rdf:type schema:DefinedTerm
68 N0e8d203ffb5746b5b9a36f9a76144b1d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
69 schema:name Tunica Media
70 rdf:type schema:DefinedTerm
71 N108f4209bb52426b942df952eb45422f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
72 schema:name Obesity
73 rdf:type schema:DefinedTerm
74 N14448d78cf4f4090b21f292c00e7d7c4 schema:volumeNumber 22
75 rdf:type schema:PublicationVolume
76 N17dec1b5b83345d8a9bb3193e7f0e6a0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
77 schema:name Humans
78 rdf:type schema:DefinedTerm
79 N1f463095417143f8a4244a0587678404 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
80 schema:name Analysis of Variance
81 rdf:type schema:DefinedTerm
82 N227d9df484d24700b637ac7fe7b87fde rdf:first sg:person.0760572422.12
83 rdf:rest Ne49a313f2b844541892bb6505e4d4c08
84 N25ff60d469b74f2c9a98f8b02b73737d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
85 schema:name Middle Aged
86 rdf:type schema:DefinedTerm
87 N26de8fc89d67469eb1fcbf9a27134847 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
88 schema:name Arteriosclerosis
89 rdf:type schema:DefinedTerm
90 N2829e949c1a9430689d81137ebafa7c6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
91 schema:name Lipids
92 rdf:type schema:DefinedTerm
93 N41309c6cc71043bba73aad9c04d9db16 schema:name doi
94 schema:value 10.1023/a:1022646204200
95 rdf:type schema:PropertyValue
96 N497b70ab8ebd4213a4584269fd03e0d0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
97 schema:name Carotid Artery Diseases
98 rdf:type schema:DefinedTerm
99 N4bce7b751b2a4fc5b513e6c595299088 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
100 schema:name Blood Pressure
101 rdf:type schema:DefinedTerm
102 N50bbf33c3f994fc6afc320f2f67ebdf9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
103 schema:name Male
104 rdf:type schema:DefinedTerm
105 N5e4b35ddef274eec82e7b05aa520c35b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
106 schema:name Cerebral Infarction
107 rdf:type schema:DefinedTerm
108 N66b55b20ce614dfe92500651bacb3913 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
109 schema:name Incidence
110 rdf:type schema:DefinedTerm
111 N6a107028ea514f76b8208d3c01f89154 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
112 schema:name Female
113 rdf:type schema:DefinedTerm
114 N6b6c1101b8bb4ed3ac46b3f2f328c764 schema:name readcube_id
115 schema:value 862deec85f82fd3da8769b74cf1d604f9c1e112fff541bcb9a26950dfac873f7
116 rdf:type schema:PropertyValue
117 N77b11ab9aaa3452189c5ae107c20beaa schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
118 schema:name Ultrasonography
119 rdf:type schema:DefinedTerm
120 N8019f86e7d0240068fcc7e2a3782aaf1 schema:issueNumber 1
121 rdf:type schema:PublicationIssue
122 N9988d59dee9d46ac98972b7fd1e5e5aa schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
123 schema:name Japan
124 rdf:type schema:DefinedTerm
125 Na8835f3670c54b508f23cabc2596e99b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
126 schema:name Primary Prevention
127 rdf:type schema:DefinedTerm
128 Na8d805b4170444bcb987e4e96067101f schema:name dimensions_id
129 schema:value pub.1028166495
130 rdf:type schema:PropertyValue
131 Nab51d06f3edc40eab9c21acfb9bbd000 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
132 schema:name Aging
133 rdf:type schema:DefinedTerm
134 Nb08bb01b3cc14675b2d26e09091847a3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
135 schema:name Age Factors
136 rdf:type schema:DefinedTerm
137 Nc00aecf53af34793a08fe3001a7cbb3d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
138 schema:name Mass Screening
139 rdf:type schema:DefinedTerm
140 Nd0b5d6bf70c34fc8b214bd6534526bb0 rdf:first sg:person.01116260631.08
141 rdf:rest rdf:nil
142 Nd40420bd0cdb44eaa48d4e4d89b8e1b0 schema:name nlm_unique_id
143 schema:value 7806056
144 rdf:type schema:PropertyValue
145 Nd4ac34b5981340c8933cff280c27abd1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
146 schema:name Adult
147 rdf:type schema:DefinedTerm
148 Nd6749d882cc145218760f93a0364daf0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
149 schema:name Body Mass Index
150 rdf:type schema:DefinedTerm
151 Nde7182572fed4c1d8b8aeea43d46578f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
152 schema:name Cause of Death
153 rdf:type schema:DefinedTerm
154 Nde864e3358f14e09aecd2109f4d459ab schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
155 schema:name Risk Factors
156 rdf:type schema:DefinedTerm
157 Ne492b80b87c34f888c0a7aed4f882fa8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
158 schema:name Aged
159 rdf:type schema:DefinedTerm
160 Ne49a313f2b844541892bb6505e4d4c08 rdf:first sg:person.01105553255.63
161 rdf:rest Nd0b5d6bf70c34fc8b214bd6534526bb0
162 Neeb858bdaa5947b78ff4e62b3341a8e3 schema:name pubmed_id
163 schema:value 9554105
164 rdf:type schema:PropertyValue
165 Nf21ce78ce7b744f68139e0b945d2d6a1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
166 schema:name Tunica Intima
167 rdf:type schema:DefinedTerm
168 Nf297ad7d5943438fa9d770b79132fbee schema:name Springer Nature - SN SciGraph project
169 rdf:type schema:Organization
170 Nf2a7e4907e314d839fe0da49f264d0ab schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
171 schema:name Carotid Arteries
172 rdf:type schema:DefinedTerm
173 Nf7358a7bd8c54abaa190ff6c65b41e9a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
174 schema:name Hypertension
175 rdf:type schema:DefinedTerm
176 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
177 schema:name Medical and Health Sciences
178 rdf:type schema:DefinedTerm
179 anzsrc-for:1102 schema:inDefinedTermSet anzsrc-for:
180 schema:name Cardiorespiratory Medicine and Haematology
181 rdf:type schema:DefinedTerm
182 sg:journal.1088158 schema:issn 0148-5598
183 1573-689X
184 schema:name Journal of Medical Systems
185 rdf:type schema:Periodical
186 sg:person.01105553255.63 schema:affiliation https://www.grid.ac/institutes/grid.415980.1
187 schema:familyName Fukuda
188 schema:givenName I.
189 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01105553255.63
190 rdf:type schema:Person
191 sg:person.01116260631.08 schema:affiliation https://www.grid.ac/institutes/grid.415980.1
192 schema:familyName Kiyose
193 schema:givenName H.
194 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01116260631.08
195 rdf:type schema:Person
196 sg:person.0760572422.12 schema:affiliation https://www.grid.ac/institutes/grid.415980.1
197 schema:familyName Yamakado
198 schema:givenName M.
199 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0760572422.12
200 rdf:type schema:Person
201 sg:pub.10.1038/362801a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024417120
202 https://doi.org/10.1038/362801a0
203 rdf:type schema:CreativeWork
204 https://app.dimensions.ai/details/publication/pub.1080071999 schema:CreativeWork
205 https://doi.org/10.1161/01.atv.11.5.1245 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034210355
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1161/01.hyp.16.6.692 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007280227
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1161/01.hyp.20.6.816 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051038076
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1161/01.str.22.11.1379 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047127989
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1161/01.str.23.4.483 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004522667
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1161/01.str.26.3.380 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063341521
216 rdf:type schema:CreativeWork
217 https://www.grid.ac/institutes/grid.415980.1 schema:alternateName Mitsui Memorial Hospital
218 schema:name Center for Multiphasic Health Testing and Services, Mitsui Memorial Hospital, 1 Kanda Izumicho, 101, Chiyoda-ku, Tokyo, Japan
219 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...