Ultrasonographically Assessed Carotid Intima-Media Thickness and Risk for Asymptomatic Cerebral Infarction View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1998-02

AUTHORS

M. Yamakado, I. Fukuda, H. Kiyose

ABSTRACT

Cerebral infarction (CI) is still a leading cause of death in Japan. Thus, the management of risk factors for CI as primary prevention is one of the most important tasks in multiphasic health testing and services. To determine whether carotid intima-media thickness (IMT) is a risk for CI, ultrasonographically assessed carotid IMT was compared between normal subjects (N) and subjects with asymptomatic CI (ACI) in 243 subjects who underwent human brain dry dock. ACI was found in 68 people (28.0%). Age, body mass index, and mean blood pressure were higher in ACI than in N. Also, atherogenic index was higher in ACI than in N. Carotid IMT was significantly thicker in ACI than in N. Furthermore, incidence of atherogenic plaque in ACI was significantly higher than that in N. In conclusion, not only aging, obesity, blood pressure, and plasma lipids, but also carotid IMT may be a risk for ACI. More... »

PAGES

15-18

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1023/a:1022646204200

DOI

http://dx.doi.org/10.1023/a:1022646204200

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1028166495

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/9554105


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Cardiorespiratory Medicine and Haematology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adult", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Age Factors", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aging", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Analysis of Variance", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Arteriosclerosis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Blood Pressure", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Body Mass Index", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Carotid Arteries", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Carotid Artery Diseases", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cause of Death", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cerebral Infarction", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Hyperlipidemias", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Hypertension", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Incidence", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Japan", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Lipids", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mass Screening", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Obesity", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Primary Prevention", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Risk Factors", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Tunica Intima", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Tunica Media", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Ultrasonography", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Mitsui Memorial Hospital", 
          "id": "https://www.grid.ac/institutes/grid.415980.1", 
          "name": [
            "Center for Multiphasic Health Testing and Services, Mitsui Memorial Hospital, 1 Kanda Izumicho, 101, Chiyoda-ku, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yamakado", 
        "givenName": "M.", 
        "id": "sg:person.0760572422.12", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0760572422.12"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Mitsui Memorial Hospital", 
          "id": "https://www.grid.ac/institutes/grid.415980.1", 
          "name": [
            "Center for Multiphasic Health Testing and Services, Mitsui Memorial Hospital, 1 Kanda Izumicho, 101, Chiyoda-ku, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fukuda", 
        "givenName": "I.", 
        "id": "sg:person.01105553255.63", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01105553255.63"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Mitsui Memorial Hospital", 
          "id": "https://www.grid.ac/institutes/grid.415980.1", 
          "name": [
            "Center for Multiphasic Health Testing and Services, Mitsui Memorial Hospital, 1 Kanda Izumicho, 101, Chiyoda-ku, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kiyose", 
        "givenName": "H.", 
        "id": "sg:person.01116260631.08", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01116260631.08"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1161/01.str.23.4.483", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004522667"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/01.hyp.16.6.692", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007280227"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/362801a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024417120", 
          "https://doi.org/10.1038/362801a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/01.atv.11.5.1245", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034210355"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/01.str.22.11.1379", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047127989"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/01.hyp.20.6.816", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051038076"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/01.str.26.3.380", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063341521"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1080071999", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1998-02", 
    "datePublishedReg": "1998-02-01", 
    "description": "Cerebral infarction (CI) is still a leading cause of death in Japan. Thus, the management of risk factors for CI as primary prevention is one of the most important tasks in multiphasic health testing and services. To determine whether carotid intima-media thickness (IMT) is a risk for CI, ultrasonographically assessed carotid IMT was compared between normal subjects (N) and subjects with asymptomatic CI (ACI) in 243 subjects who underwent human brain dry dock. ACI was found in 68 people (28.0%). Age, body mass index, and mean blood pressure were higher in ACI than in N. Also, atherogenic index was higher in ACI than in N. Carotid IMT was significantly thicker in ACI than in N. Furthermore, incidence of atherogenic plaque in ACI was significantly higher than that in N. In conclusion, not only aging, obesity, blood pressure, and plasma lipids, but also carotid IMT may be a risk for ACI.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1023/a:1022646204200", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1088158", 
        "issn": [
          "0148-5598", 
          "1573-689X"
        ], 
        "name": "Journal of Medical Systems", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "22"
      }
    ], 
    "name": "Ultrasonographically Assessed Carotid Intima-Media Thickness and Risk for Asymptomatic Cerebral Infarction", 
    "pagination": "15-18", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "862deec85f82fd3da8769b74cf1d604f9c1e112fff541bcb9a26950dfac873f7"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "9554105"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "7806056"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1023/a:1022646204200"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1028166495"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1023/a:1022646204200", 
      "https://app.dimensions.ai/details/publication/pub.1028166495"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T14:08", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8660_00000505.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1023%2FA%3A1022646204200"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1023/a:1022646204200'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1023/a:1022646204200'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1023/a:1022646204200'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1023/a:1022646204200'


 

This table displays all metadata directly associated to this object as RDF triples.

219 TRIPLES      21 PREDICATES      65 URIs      49 LITERALS      37 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1023/a:1022646204200 schema:about N029def692564499d9b65493e3c7428db
2 N11f00540f63f42b596de65f2629d6a40
3 N18c7e82dc2404fb4a2cf9d2c3cb79e53
4 N3e5a03b66fe34086b1030c77e62e102a
5 N3ed55930001b43bbaca399a82f2c0b25
6 N48583fda9f504c49bc705c562fd93fb7
7 N4f16b5c2f27c4a058d5cac415bd073ab
8 N502fae0ee3d5499796e343f68559a2bf
9 N523787c4e6314359a52145e650c7b1bd
10 N625c0879b2554889b786e3bdce46a1fe
11 N67a09d657b9e48898825908171e42751
12 N6906f6584aec4823a459ebe455e6db57
13 N7f4a9d9b34d84be69ce8732d504c6298
14 N85ec922220764e598d6f8e035f013dda
15 N873b9f7ebbe7443dae069c8128c78475
16 N892152811ed141d7bbbf06cc71ac52d5
17 N8dd5626f468646c9a32c124ebc1dce0b
18 N954b4890e2dc4c2b9d1e22ef9e540820
19 N95a92db734be4cb6ba995c8715e14bbd
20 Nc4cbc7a36208443a8210631de2c33d3e
21 Nc749e43790e049a1b37739fa1a84ddba
22 Ncfe65eb7902f43829c364bf1aee180f4
23 Nd29e84b1941b4a2f8969191ed455526c
24 Ne1c87d240a2f43b1b6fa022ee34767a5
25 Ne7a72338f358454fa9d86b90930eb85a
26 Nefa198fea0064205a706f100a4d39a06
27 Nf610c2d67aea417d88ab9787a37e8f73
28 Nf9cc31d9c4bf4db0bab45c2f6e4e88b0
29 anzsrc-for:11
30 anzsrc-for:1102
31 schema:author N1db39445f2964051ba4ffbd9cf3aa5db
32 schema:citation sg:pub.10.1038/362801a0
33 https://app.dimensions.ai/details/publication/pub.1080071999
34 https://doi.org/10.1161/01.atv.11.5.1245
35 https://doi.org/10.1161/01.hyp.16.6.692
36 https://doi.org/10.1161/01.hyp.20.6.816
37 https://doi.org/10.1161/01.str.22.11.1379
38 https://doi.org/10.1161/01.str.23.4.483
39 https://doi.org/10.1161/01.str.26.3.380
40 schema:datePublished 1998-02
41 schema:datePublishedReg 1998-02-01
42 schema:description Cerebral infarction (CI) is still a leading cause of death in Japan. Thus, the management of risk factors for CI as primary prevention is one of the most important tasks in multiphasic health testing and services. To determine whether carotid intima-media thickness (IMT) is a risk for CI, ultrasonographically assessed carotid IMT was compared between normal subjects (N) and subjects with asymptomatic CI (ACI) in 243 subjects who underwent human brain dry dock. ACI was found in 68 people (28.0%). Age, body mass index, and mean blood pressure were higher in ACI than in N. Also, atherogenic index was higher in ACI than in N. Carotid IMT was significantly thicker in ACI than in N. Furthermore, incidence of atherogenic plaque in ACI was significantly higher than that in N. In conclusion, not only aging, obesity, blood pressure, and plasma lipids, but also carotid IMT may be a risk for ACI.
43 schema:genre research_article
44 schema:inLanguage en
45 schema:isAccessibleForFree false
46 schema:isPartOf Na1a5d0dceac841898b193d058e670f03
47 Ne64985dbc2454a99a3cf4d240eff585f
48 sg:journal.1088158
49 schema:name Ultrasonographically Assessed Carotid Intima-Media Thickness and Risk for Asymptomatic Cerebral Infarction
50 schema:pagination 15-18
51 schema:productId N0c96e7b28089487581f992fc4107077e
52 N135ca746d34b45ccad74518ee1837d85
53 N3afac323a872431cb55ecd9d0ce50959
54 Ndc698dc1379f42b7bad374ddcefb76d1
55 Ne700ff18cc454ab59de5830c1b49bcc5
56 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028166495
57 https://doi.org/10.1023/a:1022646204200
58 schema:sdDatePublished 2019-04-10T14:08
59 schema:sdLicense https://scigraph.springernature.com/explorer/license/
60 schema:sdPublisher Nd73584fce47f4d2881ac460593a682c7
61 schema:url http://link.springer.com/10.1023%2FA%3A1022646204200
62 sgo:license sg:explorer/license/
63 sgo:sdDataset articles
64 rdf:type schema:ScholarlyArticle
65 N029def692564499d9b65493e3c7428db schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
66 schema:name Japan
67 rdf:type schema:DefinedTerm
68 N0c96e7b28089487581f992fc4107077e schema:name dimensions_id
69 schema:value pub.1028166495
70 rdf:type schema:PropertyValue
71 N11f00540f63f42b596de65f2629d6a40 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
72 schema:name Carotid Arteries
73 rdf:type schema:DefinedTerm
74 N135ca746d34b45ccad74518ee1837d85 schema:name readcube_id
75 schema:value 862deec85f82fd3da8769b74cf1d604f9c1e112fff541bcb9a26950dfac873f7
76 rdf:type schema:PropertyValue
77 N18c7e82dc2404fb4a2cf9d2c3cb79e53 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
78 schema:name Adult
79 rdf:type schema:DefinedTerm
80 N1db39445f2964051ba4ffbd9cf3aa5db rdf:first sg:person.0760572422.12
81 rdf:rest N87f3d22838e04b1f9b9c8e19941e3aa4
82 N3afac323a872431cb55ecd9d0ce50959 schema:name doi
83 schema:value 10.1023/a:1022646204200
84 rdf:type schema:PropertyValue
85 N3e5a03b66fe34086b1030c77e62e102a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
86 schema:name Cerebral Infarction
87 rdf:type schema:DefinedTerm
88 N3ed55930001b43bbaca399a82f2c0b25 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
89 schema:name Incidence
90 rdf:type schema:DefinedTerm
91 N48583fda9f504c49bc705c562fd93fb7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
92 schema:name Tunica Media
93 rdf:type schema:DefinedTerm
94 N4f16b5c2f27c4a058d5cac415bd073ab schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
95 schema:name Aged
96 rdf:type schema:DefinedTerm
97 N502fae0ee3d5499796e343f68559a2bf schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
98 schema:name Carotid Artery Diseases
99 rdf:type schema:DefinedTerm
100 N523787c4e6314359a52145e650c7b1bd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
101 schema:name Hypertension
102 rdf:type schema:DefinedTerm
103 N625c0879b2554889b786e3bdce46a1fe schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
104 schema:name Age Factors
105 rdf:type schema:DefinedTerm
106 N67a09d657b9e48898825908171e42751 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
107 schema:name Blood Pressure
108 rdf:type schema:DefinedTerm
109 N6906f6584aec4823a459ebe455e6db57 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
110 schema:name Analysis of Variance
111 rdf:type schema:DefinedTerm
112 N7f4a9d9b34d84be69ce8732d504c6298 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
113 schema:name Primary Prevention
114 rdf:type schema:DefinedTerm
115 N85ec922220764e598d6f8e035f013dda schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
116 schema:name Male
117 rdf:type schema:DefinedTerm
118 N873b9f7ebbe7443dae069c8128c78475 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
119 schema:name Aging
120 rdf:type schema:DefinedTerm
121 N87f3d22838e04b1f9b9c8e19941e3aa4 rdf:first sg:person.01105553255.63
122 rdf:rest Nd21b2254843b443bb383e78b9abfe1e0
123 N892152811ed141d7bbbf06cc71ac52d5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
124 schema:name Obesity
125 rdf:type schema:DefinedTerm
126 N8dd5626f468646c9a32c124ebc1dce0b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
127 schema:name Arteriosclerosis
128 rdf:type schema:DefinedTerm
129 N954b4890e2dc4c2b9d1e22ef9e540820 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
130 schema:name Body Mass Index
131 rdf:type schema:DefinedTerm
132 N95a92db734be4cb6ba995c8715e14bbd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
133 schema:name Cause of Death
134 rdf:type schema:DefinedTerm
135 Na1a5d0dceac841898b193d058e670f03 schema:volumeNumber 22
136 rdf:type schema:PublicationVolume
137 Nc4cbc7a36208443a8210631de2c33d3e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
138 schema:name Mass Screening
139 rdf:type schema:DefinedTerm
140 Nc749e43790e049a1b37739fa1a84ddba schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
141 schema:name Risk Factors
142 rdf:type schema:DefinedTerm
143 Ncfe65eb7902f43829c364bf1aee180f4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
144 schema:name Middle Aged
145 rdf:type schema:DefinedTerm
146 Nd21b2254843b443bb383e78b9abfe1e0 rdf:first sg:person.01116260631.08
147 rdf:rest rdf:nil
148 Nd29e84b1941b4a2f8969191ed455526c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
149 schema:name Female
150 rdf:type schema:DefinedTerm
151 Nd73584fce47f4d2881ac460593a682c7 schema:name Springer Nature - SN SciGraph project
152 rdf:type schema:Organization
153 Ndc698dc1379f42b7bad374ddcefb76d1 schema:name nlm_unique_id
154 schema:value 7806056
155 rdf:type schema:PropertyValue
156 Ne1c87d240a2f43b1b6fa022ee34767a5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
157 schema:name Lipids
158 rdf:type schema:DefinedTerm
159 Ne64985dbc2454a99a3cf4d240eff585f schema:issueNumber 1
160 rdf:type schema:PublicationIssue
161 Ne700ff18cc454ab59de5830c1b49bcc5 schema:name pubmed_id
162 schema:value 9554105
163 rdf:type schema:PropertyValue
164 Ne7a72338f358454fa9d86b90930eb85a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
165 schema:name Ultrasonography
166 rdf:type schema:DefinedTerm
167 Nefa198fea0064205a706f100a4d39a06 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
168 schema:name Humans
169 rdf:type schema:DefinedTerm
170 Nf610c2d67aea417d88ab9787a37e8f73 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
171 schema:name Tunica Intima
172 rdf:type schema:DefinedTerm
173 Nf9cc31d9c4bf4db0bab45c2f6e4e88b0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
174 schema:name Hyperlipidemias
175 rdf:type schema:DefinedTerm
176 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
177 schema:name Medical and Health Sciences
178 rdf:type schema:DefinedTerm
179 anzsrc-for:1102 schema:inDefinedTermSet anzsrc-for:
180 schema:name Cardiorespiratory Medicine and Haematology
181 rdf:type schema:DefinedTerm
182 sg:journal.1088158 schema:issn 0148-5598
183 1573-689X
184 schema:name Journal of Medical Systems
185 rdf:type schema:Periodical
186 sg:person.01105553255.63 schema:affiliation https://www.grid.ac/institutes/grid.415980.1
187 schema:familyName Fukuda
188 schema:givenName I.
189 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01105553255.63
190 rdf:type schema:Person
191 sg:person.01116260631.08 schema:affiliation https://www.grid.ac/institutes/grid.415980.1
192 schema:familyName Kiyose
193 schema:givenName H.
194 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01116260631.08
195 rdf:type schema:Person
196 sg:person.0760572422.12 schema:affiliation https://www.grid.ac/institutes/grid.415980.1
197 schema:familyName Yamakado
198 schema:givenName M.
199 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0760572422.12
200 rdf:type schema:Person
201 sg:pub.10.1038/362801a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024417120
202 https://doi.org/10.1038/362801a0
203 rdf:type schema:CreativeWork
204 https://app.dimensions.ai/details/publication/pub.1080071999 schema:CreativeWork
205 https://doi.org/10.1161/01.atv.11.5.1245 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034210355
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1161/01.hyp.16.6.692 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007280227
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1161/01.hyp.20.6.816 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051038076
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1161/01.str.22.11.1379 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047127989
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1161/01.str.23.4.483 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004522667
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1161/01.str.26.3.380 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063341521
216 rdf:type schema:CreativeWork
217 https://www.grid.ac/institutes/grid.415980.1 schema:alternateName Mitsui Memorial Hospital
218 schema:name Center for Multiphasic Health Testing and Services, Mitsui Memorial Hospital, 1 Kanda Izumicho, 101, Chiyoda-ku, Tokyo, Japan
219 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...