Very Simple Classification Rules Perform Well on Most Commonly Used Datasets View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

1993-04

AUTHORS

Robert C. Holte

ABSTRACT

This article reports an empirical investigation of the accuracy of rules that classify examples on the basis of a single attribute. On most datasets studied, the best of these very simple rules is as accurate as the rules induced by the majority of machine learning systems. The article explores the implications of this finding for machine learning research and applications. More... »

PAGES

63-90

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1023/a:1022631118932

DOI

http://dx.doi.org/10.1023/a:1022631118932

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1006996698


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Ottawa", 
          "id": "https://www.grid.ac/institutes/grid.28046.38", 
          "name": [
            "Computer Science Department, University of Ottawa, KIN 6N5, Ottawa, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Holte", 
        "givenName": "Robert C.", 
        "id": "sg:person.015724610265.77", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015724610265.77"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bfb0017010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002700188", 
          "https://doi.org/10.1007/bfb0017010"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bfb0017011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003031921", 
          "https://doi.org/10.1007/bfb0017011"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/b978-1-55860-200-7.50012-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005261705"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/b978-0-934613-64-4.50007-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005534230"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1467-8640.1990.tb00298.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006236573"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1467-8640.1990.tb00298.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006236573"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00114160", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006559689", 
          "https://doi.org/10.1007/bf00114160"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/b978-1-55860-247-2.50035-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007954235"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/b978-1-55860-036-2.50033-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012362108"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00994004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012729764", 
          "https://doi.org/10.1007/bf00994004"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00116835", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013474790", 
          "https://doi.org/10.1007/bf00116835"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/b978-1-55860-141-3.50008-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014666140"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00114779", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016646699", 
          "https://doi.org/10.1007/bf00114779"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00114265", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017000685", 
          "https://doi.org/10.1007/bf00114265"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01531011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019403240", 
          "https://doi.org/10.1007/bf01531011"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00116251", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019422208", 
          "https://doi.org/10.1007/bf00116251"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bfb0017012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020632806", 
          "https://doi.org/10.1007/bfb0017012"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/b978-1-55860-200-7.50049-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020875449"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1022604100933", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023772042", 
          "https://doi.org/10.1023/a:1022604100933"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/b978-1-55860-141-3.50011-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024608212"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/b978-1-55860-036-2.50048-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032492731"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0004-3702(90)90037-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032769452"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0004-3702(90)90037-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032769452"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/b978-1-55860-141-3.50010-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034420300"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1022694001379", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037634394", 
          "https://doi.org/10.1023/a:1022694001379"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00994006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041007921", 
          "https://doi.org/10.1007/bf00994006"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00993504", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041330751", 
          "https://doi.org/10.1007/bf00993504"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/b978-1-55860-036-2.50118-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041432871"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/b978-1-55860-200-7.50121-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045122945"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/b978-0-934613-64-4.50018-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045711018"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/b978-0-934613-64-4.50015-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047049156"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/b978-0-934613-64-4.50013-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048932642"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/scientificamerican0583-116", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056542148", 
          "https://doi.org/10.1038/scientificamerican0583-116"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1993-04", 
    "datePublishedReg": "1993-04-01", 
    "description": "This article reports an empirical investigation of the accuracy of rules that classify examples on the basis of a single attribute. On most datasets studied, the best of these very simple rules is as accurate as the rules induced by the majority of machine learning systems. The article explores the implications of this finding for machine learning research and applications.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1023/a:1022631118932", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1125588", 
        "issn": [
          "0885-6125", 
          "1573-0565"
        ], 
        "name": "Machine Learning", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "11"
      }
    ], 
    "name": "Very Simple Classification Rules Perform Well on Most Commonly Used Datasets", 
    "pagination": "63-90", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "21542e037edc40b4d2ab881597f1f24554fe4a6c13bf65857f2562eb2f058922"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1023/a:1022631118932"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1006996698"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1023/a:1022631118932", 
      "https://app.dimensions.ai/details/publication/pub.1006996698"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T19:55", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8681_00000503.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1023%2FA%3A1022631118932"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1023/a:1022631118932'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1023/a:1022631118932'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1023/a:1022631118932'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1023/a:1022631118932'


 

This table displays all metadata directly associated to this object as RDF triples.

169 TRIPLES      21 PREDICATES      58 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1023/a:1022631118932 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N64415dc8fcf847948905fef6c75ee698
4 schema:citation sg:pub.10.1007/bf00114160
5 sg:pub.10.1007/bf00114265
6 sg:pub.10.1007/bf00114779
7 sg:pub.10.1007/bf00116251
8 sg:pub.10.1007/bf00116835
9 sg:pub.10.1007/bf00993504
10 sg:pub.10.1007/bf00994004
11 sg:pub.10.1007/bf00994006
12 sg:pub.10.1007/bf01531011
13 sg:pub.10.1007/bfb0017010
14 sg:pub.10.1007/bfb0017011
15 sg:pub.10.1007/bfb0017012
16 sg:pub.10.1023/a:1022604100933
17 sg:pub.10.1023/a:1022694001379
18 sg:pub.10.1038/scientificamerican0583-116
19 https://doi.org/10.1016/0004-3702(90)90037-z
20 https://doi.org/10.1016/b978-0-934613-64-4.50007-4
21 https://doi.org/10.1016/b978-0-934613-64-4.50013-x
22 https://doi.org/10.1016/b978-0-934613-64-4.50015-3
23 https://doi.org/10.1016/b978-0-934613-64-4.50018-9
24 https://doi.org/10.1016/b978-1-55860-036-2.50033-3
25 https://doi.org/10.1016/b978-1-55860-036-2.50048-5
26 https://doi.org/10.1016/b978-1-55860-036-2.50118-1
27 https://doi.org/10.1016/b978-1-55860-141-3.50008-0
28 https://doi.org/10.1016/b978-1-55860-141-3.50010-9
29 https://doi.org/10.1016/b978-1-55860-141-3.50011-0
30 https://doi.org/10.1016/b978-1-55860-200-7.50012-x
31 https://doi.org/10.1016/b978-1-55860-200-7.50049-0
32 https://doi.org/10.1016/b978-1-55860-200-7.50121-5
33 https://doi.org/10.1016/b978-1-55860-247-2.50035-8
34 https://doi.org/10.1111/j.1467-8640.1990.tb00298.x
35 schema:datePublished 1993-04
36 schema:datePublishedReg 1993-04-01
37 schema:description This article reports an empirical investigation of the accuracy of rules that classify examples on the basis of a single attribute. On most datasets studied, the best of these very simple rules is as accurate as the rules induced by the majority of machine learning systems. The article explores the implications of this finding for machine learning research and applications.
38 schema:genre research_article
39 schema:inLanguage en
40 schema:isAccessibleForFree true
41 schema:isPartOf N701d4b99140b4463898e96a061a11258
42 Ne031ba6a78854c9e8e87f1d7ee045874
43 sg:journal.1125588
44 schema:name Very Simple Classification Rules Perform Well on Most Commonly Used Datasets
45 schema:pagination 63-90
46 schema:productId N0803a2bcb7144d2095c6172a31c75c42
47 N6bbb70b4170a4ef7893613ad83612ead
48 Nca5de7d7323d402ba6cee61aa9890e30
49 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006996698
50 https://doi.org/10.1023/a:1022631118932
51 schema:sdDatePublished 2019-04-10T19:55
52 schema:sdLicense https://scigraph.springernature.com/explorer/license/
53 schema:sdPublisher N11ab2c02f37c497ca09fdec9e4df421f
54 schema:url http://link.springer.com/10.1023%2FA%3A1022631118932
55 sgo:license sg:explorer/license/
56 sgo:sdDataset articles
57 rdf:type schema:ScholarlyArticle
58 N0803a2bcb7144d2095c6172a31c75c42 schema:name doi
59 schema:value 10.1023/a:1022631118932
60 rdf:type schema:PropertyValue
61 N11ab2c02f37c497ca09fdec9e4df421f schema:name Springer Nature - SN SciGraph project
62 rdf:type schema:Organization
63 N64415dc8fcf847948905fef6c75ee698 rdf:first sg:person.015724610265.77
64 rdf:rest rdf:nil
65 N6bbb70b4170a4ef7893613ad83612ead schema:name readcube_id
66 schema:value 21542e037edc40b4d2ab881597f1f24554fe4a6c13bf65857f2562eb2f058922
67 rdf:type schema:PropertyValue
68 N701d4b99140b4463898e96a061a11258 schema:volumeNumber 11
69 rdf:type schema:PublicationVolume
70 Nca5de7d7323d402ba6cee61aa9890e30 schema:name dimensions_id
71 schema:value pub.1006996698
72 rdf:type schema:PropertyValue
73 Ne031ba6a78854c9e8e87f1d7ee045874 schema:issueNumber 1
74 rdf:type schema:PublicationIssue
75 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
76 schema:name Information and Computing Sciences
77 rdf:type schema:DefinedTerm
78 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
79 schema:name Artificial Intelligence and Image Processing
80 rdf:type schema:DefinedTerm
81 sg:journal.1125588 schema:issn 0885-6125
82 1573-0565
83 schema:name Machine Learning
84 rdf:type schema:Periodical
85 sg:person.015724610265.77 schema:affiliation https://www.grid.ac/institutes/grid.28046.38
86 schema:familyName Holte
87 schema:givenName Robert C.
88 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015724610265.77
89 rdf:type schema:Person
90 sg:pub.10.1007/bf00114160 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006559689
91 https://doi.org/10.1007/bf00114160
92 rdf:type schema:CreativeWork
93 sg:pub.10.1007/bf00114265 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017000685
94 https://doi.org/10.1007/bf00114265
95 rdf:type schema:CreativeWork
96 sg:pub.10.1007/bf00114779 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016646699
97 https://doi.org/10.1007/bf00114779
98 rdf:type schema:CreativeWork
99 sg:pub.10.1007/bf00116251 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019422208
100 https://doi.org/10.1007/bf00116251
101 rdf:type schema:CreativeWork
102 sg:pub.10.1007/bf00116835 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013474790
103 https://doi.org/10.1007/bf00116835
104 rdf:type schema:CreativeWork
105 sg:pub.10.1007/bf00993504 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041330751
106 https://doi.org/10.1007/bf00993504
107 rdf:type schema:CreativeWork
108 sg:pub.10.1007/bf00994004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012729764
109 https://doi.org/10.1007/bf00994004
110 rdf:type schema:CreativeWork
111 sg:pub.10.1007/bf00994006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041007921
112 https://doi.org/10.1007/bf00994006
113 rdf:type schema:CreativeWork
114 sg:pub.10.1007/bf01531011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019403240
115 https://doi.org/10.1007/bf01531011
116 rdf:type schema:CreativeWork
117 sg:pub.10.1007/bfb0017010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002700188
118 https://doi.org/10.1007/bfb0017010
119 rdf:type schema:CreativeWork
120 sg:pub.10.1007/bfb0017011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003031921
121 https://doi.org/10.1007/bfb0017011
122 rdf:type schema:CreativeWork
123 sg:pub.10.1007/bfb0017012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020632806
124 https://doi.org/10.1007/bfb0017012
125 rdf:type schema:CreativeWork
126 sg:pub.10.1023/a:1022604100933 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023772042
127 https://doi.org/10.1023/a:1022604100933
128 rdf:type schema:CreativeWork
129 sg:pub.10.1023/a:1022694001379 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037634394
130 https://doi.org/10.1023/a:1022694001379
131 rdf:type schema:CreativeWork
132 sg:pub.10.1038/scientificamerican0583-116 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056542148
133 https://doi.org/10.1038/scientificamerican0583-116
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1016/0004-3702(90)90037-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1032769452
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1016/b978-0-934613-64-4.50007-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005534230
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1016/b978-0-934613-64-4.50013-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1048932642
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1016/b978-0-934613-64-4.50015-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047049156
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1016/b978-0-934613-64-4.50018-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045711018
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1016/b978-1-55860-036-2.50033-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012362108
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1016/b978-1-55860-036-2.50048-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032492731
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1016/b978-1-55860-036-2.50118-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041432871
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1016/b978-1-55860-141-3.50008-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014666140
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1016/b978-1-55860-141-3.50010-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034420300
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1016/b978-1-55860-141-3.50011-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024608212
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1016/b978-1-55860-200-7.50012-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1005261705
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1016/b978-1-55860-200-7.50049-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020875449
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1016/b978-1-55860-200-7.50121-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045122945
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1016/b978-1-55860-247-2.50035-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007954235
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1111/j.1467-8640.1990.tb00298.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1006236573
166 rdf:type schema:CreativeWork
167 https://www.grid.ac/institutes/grid.28046.38 schema:alternateName University of Ottawa
168 schema:name Computer Science Department, University of Ottawa, KIN 6N5, Ottawa, Canada
169 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...