Solution of the Thermoelasticity Problem in the Form of a Traveling Wave and its Application to Analysis of Possible Regimes ... View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2003-03

AUTHORS

A. G. Knyazeva

ABSTRACT

Using the known self‐similar solutions of the theory of temperature stresses and thermal theory of combustion on the basis of coupled models of solid‐phase combustion proposed for the description of various physicochemical transformations, it is shown that the regime of fast (supersonic) solid‐phase transformation (solid‐phase detonation) is typical of a reacting medium, as well as the regime of slow combustion. Partial (exact) integration and transformation of variables allow one to reduce the systems of equations that describe various solid‐phase processes to shock‐wave equations having continuous solutions of the traveling‐wave type. More... »

PAGES

164-173

References to SciGraph publications

  • 1995-05. Stationary wave of a chemical reaction in a deformable medium with finite relaxation time of the heat flux in COMBUSTION, EXPLOSION, AND SHOCK WAVES
  • 1993-05. Combustion wave propagation through deformed solids in COMBUSTION, EXPLOSION, AND SHOCK WAVES
  • 2000-07. Model for the propagation of a stationary reaction front in a viscoelastic medium in COMBUSTION, EXPLOSION, AND SHOCK WAVES
  • 1999-12. Model of detonation of lead azide (Pb(N3)2) with regard to fracture in INTERNATIONAL JOURNAL OF FRACTURE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1023/a:1022580023603

    DOI

    http://dx.doi.org/10.1023/a:1022580023603

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1019446845


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0915", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Interdisciplinary Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Russian Academy of Sciences", 
              "id": "https://www.grid.ac/institutes/grid.4886.2", 
              "name": [
                "Institute of Physics of Strength and Material Science, Siberian Division, Russian Academy of Sciences, 634021, Tomsk"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Knyazeva", 
            "givenName": "A. G.", 
            "id": "sg:person.015605237135.34", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015605237135.34"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf00797645", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002539531", 
              "https://doi.org/10.1007/bf00797645"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1018788304044", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013085634", 
              "https://doi.org/10.1023/a:1018788304044"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00742675", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023490943", 
              "https://doi.org/10.1007/bf00742675"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00742675", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023490943", 
              "https://doi.org/10.1007/bf00742675"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00742675", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023490943", 
              "https://doi.org/10.1007/bf00742675"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02699475", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026013566", 
              "https://doi.org/10.1007/bf02699475"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02699475", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026013566", 
              "https://doi.org/10.1007/bf02699475"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1098/rspa.1967.0041", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028401956"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1615/intjenergeticmaterialschemprop.v5.i1-6.890", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1068138481"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2003-03", 
        "datePublishedReg": "2003-03-01", 
        "description": "Using the known self\u2010similar solutions of the theory of temperature stresses and thermal theory of combustion on the basis of coupled models of solid\u2010phase combustion proposed for the description of various physicochemical transformations, it is shown that the regime of fast (supersonic) solid\u2010phase transformation (solid\u2010phase detonation) is typical of a reacting medium, as well as the regime of slow combustion. Partial (exact) integration and transformation of variables allow one to reduce the systems of equations that describe various solid\u2010phase processes to shock\u2010wave equations having continuous solutions of the traveling\u2010wave type.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1023/a:1022580023603", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1136652", 
            "issn": [
              "0021-8944", 
              "1573-8620"
            ], 
            "name": "Journal of Applied Mechanics and Technical Physics", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "2", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "44"
          }
        ], 
        "name": "Solution of the Thermoelasticity Problem in the Form of a Traveling Wave and its Application to Analysis of Possible Regimes of Solid\u2010Phase Transformations", 
        "pagination": "164-173", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "5ca8504be1a899c678ca23a9c09deadd655a5129c494c0db89e991d78fced61d"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1023/a:1022580023603"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1019446845"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1023/a:1022580023603", 
          "https://app.dimensions.ai/details/publication/pub.1019446845"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T22:30", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8690_00000504.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1023%2FA%3A1022580023603"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1023/a:1022580023603'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1023/a:1022580023603'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1023/a:1022580023603'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1023/a:1022580023603'


     

    This table displays all metadata directly associated to this object as RDF triples.

    83 TRIPLES      21 PREDICATES      33 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1023/a:1022580023603 schema:about anzsrc-for:09
    2 anzsrc-for:0915
    3 schema:author Nbb14f0602d4f4ab1b57f87bbce219dd3
    4 schema:citation sg:pub.10.1007/bf00742675
    5 sg:pub.10.1007/bf00797645
    6 sg:pub.10.1007/bf02699475
    7 sg:pub.10.1023/a:1018788304044
    8 https://doi.org/10.1098/rspa.1967.0041
    9 https://doi.org/10.1615/intjenergeticmaterialschemprop.v5.i1-6.890
    10 schema:datePublished 2003-03
    11 schema:datePublishedReg 2003-03-01
    12 schema:description Using the known self‐similar solutions of the theory of temperature stresses and thermal theory of combustion on the basis of coupled models of solid‐phase combustion proposed for the description of various physicochemical transformations, it is shown that the regime of fast (supersonic) solid‐phase transformation (solid‐phase detonation) is typical of a reacting medium, as well as the regime of slow combustion. Partial (exact) integration and transformation of variables allow one to reduce the systems of equations that describe various solid‐phase processes to shock‐wave equations having continuous solutions of the traveling‐wave type.
    13 schema:genre research_article
    14 schema:inLanguage en
    15 schema:isAccessibleForFree false
    16 schema:isPartOf Nfaf7b4c3f7ca41eca865ebd64810e197
    17 Nfd27c35af4e74c158b1e6f1654d0f683
    18 sg:journal.1136652
    19 schema:name Solution of the Thermoelasticity Problem in the Form of a Traveling Wave and its Application to Analysis of Possible Regimes of Solid‐Phase Transformations
    20 schema:pagination 164-173
    21 schema:productId N88e7d39e76e64790a77551101b8743e4
    22 Nc353d7477afa43e6a49c3538cd45fbe7
    23 Ndddbfa1ad825453c809d79cb172972ad
    24 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019446845
    25 https://doi.org/10.1023/a:1022580023603
    26 schema:sdDatePublished 2019-04-10T22:30
    27 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    28 schema:sdPublisher Na60c9c20626b46e2bc6aa32b4d159d4a
    29 schema:url http://link.springer.com/10.1023%2FA%3A1022580023603
    30 sgo:license sg:explorer/license/
    31 sgo:sdDataset articles
    32 rdf:type schema:ScholarlyArticle
    33 N88e7d39e76e64790a77551101b8743e4 schema:name dimensions_id
    34 schema:value pub.1019446845
    35 rdf:type schema:PropertyValue
    36 Na60c9c20626b46e2bc6aa32b4d159d4a schema:name Springer Nature - SN SciGraph project
    37 rdf:type schema:Organization
    38 Nbb14f0602d4f4ab1b57f87bbce219dd3 rdf:first sg:person.015605237135.34
    39 rdf:rest rdf:nil
    40 Nc353d7477afa43e6a49c3538cd45fbe7 schema:name readcube_id
    41 schema:value 5ca8504be1a899c678ca23a9c09deadd655a5129c494c0db89e991d78fced61d
    42 rdf:type schema:PropertyValue
    43 Ndddbfa1ad825453c809d79cb172972ad schema:name doi
    44 schema:value 10.1023/a:1022580023603
    45 rdf:type schema:PropertyValue
    46 Nfaf7b4c3f7ca41eca865ebd64810e197 schema:volumeNumber 44
    47 rdf:type schema:PublicationVolume
    48 Nfd27c35af4e74c158b1e6f1654d0f683 schema:issueNumber 2
    49 rdf:type schema:PublicationIssue
    50 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    51 schema:name Engineering
    52 rdf:type schema:DefinedTerm
    53 anzsrc-for:0915 schema:inDefinedTermSet anzsrc-for:
    54 schema:name Interdisciplinary Engineering
    55 rdf:type schema:DefinedTerm
    56 sg:journal.1136652 schema:issn 0021-8944
    57 1573-8620
    58 schema:name Journal of Applied Mechanics and Technical Physics
    59 rdf:type schema:Periodical
    60 sg:person.015605237135.34 schema:affiliation https://www.grid.ac/institutes/grid.4886.2
    61 schema:familyName Knyazeva
    62 schema:givenName A. G.
    63 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015605237135.34
    64 rdf:type schema:Person
    65 sg:pub.10.1007/bf00742675 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023490943
    66 https://doi.org/10.1007/bf00742675
    67 rdf:type schema:CreativeWork
    68 sg:pub.10.1007/bf00797645 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002539531
    69 https://doi.org/10.1007/bf00797645
    70 rdf:type schema:CreativeWork
    71 sg:pub.10.1007/bf02699475 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026013566
    72 https://doi.org/10.1007/bf02699475
    73 rdf:type schema:CreativeWork
    74 sg:pub.10.1023/a:1018788304044 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013085634
    75 https://doi.org/10.1023/a:1018788304044
    76 rdf:type schema:CreativeWork
    77 https://doi.org/10.1098/rspa.1967.0041 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028401956
    78 rdf:type schema:CreativeWork
    79 https://doi.org/10.1615/intjenergeticmaterialschemprop.v5.i1-6.890 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068138481
    80 rdf:type schema:CreativeWork
    81 https://www.grid.ac/institutes/grid.4886.2 schema:alternateName Russian Academy of Sciences
    82 schema:name Institute of Physics of Strength and Material Science, Siberian Division, Russian Academy of Sciences, 634021, Tomsk
    83 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...