Diophantine m-tuples for linear polynomials View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2002-09

AUTHORS

Andrej Dujella, Clemens Fuchs, Robert F. Tichy

ABSTRACT

In this paper, we prove that there does not exist a set with more than 26 polynomials with integer coefficients, such that the product of any two of them plus a linear polynomial is a square of a polynomial with integer coefficients.

PAGES

21-33

Journal

TITLE

Periodica Mathematica Hungarica

ISSUE

1-2

VOLUME

45

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1023/a:1022389711839

DOI

http://dx.doi.org/10.1023/a:1022389711839

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1046736679


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Zagreb", 
          "id": "https://www.grid.ac/institutes/grid.4808.4", 
          "name": [
            "Department of Mathematics, University of Zagreb, Bijeniv cka cesta 30, 10000, Zagreb, Croatia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dujella", 
        "givenName": "Andrej", 
        "id": "sg:person.012534326347.04", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012534326347.04"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Institut f\u00fcr Mathematik, TU, Graz, Steyrergasse 30, A-8010, Graz, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fuchs", 
        "givenName": "Clemens", 
        "id": "sg:person.011534256073.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011534256073.49"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Institut f. Mathematik, TU, Graz, Steyrergasse 30, A-8010, Graz, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tichy", 
        "givenName": "Robert F.", 
        "id": "sg:person.015312676677.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015312676677.43"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1515/crll.1998.049", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037504246"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0305004100060497", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053829659"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0305004100044418", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053910753"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0305004101005515", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054089499"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0305004101005515", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054089499"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4064/aa-18-1-77-81", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091798147"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4064/aa-65-1-15-27", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092029880"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2002-09", 
    "datePublishedReg": "2002-09-01", 
    "description": "In this paper, we prove that there does not exist a set with more than 26 polynomials with integer coefficients, such that the product of any two of them plus a linear polynomial is a square of a polynomial with integer coefficients.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1023/a:1022389711839", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136293", 
        "issn": [
          "0031-5303", 
          "1588-2829"
        ], 
        "name": "Periodica Mathematica Hungarica", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1-2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "45"
      }
    ], 
    "name": "Diophantine m-tuples for linear polynomials", 
    "pagination": "21-33", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "dea2937202f8c00a70484aac26547da516b9bc4a191d33367b2f0efb09f746ab"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1023/a:1022389711839"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1046736679"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1023/a:1022389711839", 
      "https://app.dimensions.ai/details/publication/pub.1046736679"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T19:07", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8678_00000507.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1023%2FA%3A1022389711839"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1023/a:1022389711839'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1023/a:1022389711839'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1023/a:1022389711839'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1023/a:1022389711839'


 

This table displays all metadata directly associated to this object as RDF triples.

89 TRIPLES      20 PREDICATES      31 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1023/a:1022389711839 schema:author N5dc6974cab714e9d903cbfa0f3d1107f
2 schema:citation https://doi.org/10.1017/s0305004100044418
3 https://doi.org/10.1017/s0305004100060497
4 https://doi.org/10.1017/s0305004101005515
5 https://doi.org/10.1515/crll.1998.049
6 https://doi.org/10.4064/aa-18-1-77-81
7 https://doi.org/10.4064/aa-65-1-15-27
8 schema:datePublished 2002-09
9 schema:datePublishedReg 2002-09-01
10 schema:description In this paper, we prove that there does not exist a set with more than 26 polynomials with integer coefficients, such that the product of any two of them plus a linear polynomial is a square of a polynomial with integer coefficients.
11 schema:genre research_article
12 schema:inLanguage en
13 schema:isAccessibleForFree false
14 schema:isPartOf N25b6cb73a6f94f85824dacf78dfcc1d0
15 N4d72a03a1ba94c5bad754f17cf4a7c57
16 sg:journal.1136293
17 schema:name Diophantine m-tuples for linear polynomials
18 schema:pagination 21-33
19 schema:productId N65737a32599f45799bfcf1937cde779c
20 Nd45a12ed90114a769b4740ce19443081
21 Nf0181516cac240fdb0104f82fc5dbc81
22 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046736679
23 https://doi.org/10.1023/a:1022389711839
24 schema:sdDatePublished 2019-04-10T19:07
25 schema:sdLicense https://scigraph.springernature.com/explorer/license/
26 schema:sdPublisher Ne1a804181029482980b9a29b5a7110f1
27 schema:url http://link.springer.com/10.1023%2FA%3A1022389711839
28 sgo:license sg:explorer/license/
29 sgo:sdDataset articles
30 rdf:type schema:ScholarlyArticle
31 N1c23d2cf7e614c429b9404460a93151c schema:name Institut für Mathematik, TU, Graz, Steyrergasse 30, A-8010, Graz, Austria
32 rdf:type schema:Organization
33 N25b6cb73a6f94f85824dacf78dfcc1d0 schema:volumeNumber 45
34 rdf:type schema:PublicationVolume
35 N4d72a03a1ba94c5bad754f17cf4a7c57 schema:issueNumber 1-2
36 rdf:type schema:PublicationIssue
37 N5dc6974cab714e9d903cbfa0f3d1107f rdf:first sg:person.012534326347.04
38 rdf:rest Nda969341905049a2a8e562cc8548ffeb
39 N5e1de1959d5c451e848ab0f09979988b rdf:first sg:person.015312676677.43
40 rdf:rest rdf:nil
41 N65737a32599f45799bfcf1937cde779c schema:name dimensions_id
42 schema:value pub.1046736679
43 rdf:type schema:PropertyValue
44 N7c29324912d64a059fabbaf0e10c7d3f schema:name Institut f. Mathematik, TU, Graz, Steyrergasse 30, A-8010, Graz, Austria
45 rdf:type schema:Organization
46 Nd45a12ed90114a769b4740ce19443081 schema:name doi
47 schema:value 10.1023/a:1022389711839
48 rdf:type schema:PropertyValue
49 Nda969341905049a2a8e562cc8548ffeb rdf:first sg:person.011534256073.49
50 rdf:rest N5e1de1959d5c451e848ab0f09979988b
51 Ne1a804181029482980b9a29b5a7110f1 schema:name Springer Nature - SN SciGraph project
52 rdf:type schema:Organization
53 Nf0181516cac240fdb0104f82fc5dbc81 schema:name readcube_id
54 schema:value dea2937202f8c00a70484aac26547da516b9bc4a191d33367b2f0efb09f746ab
55 rdf:type schema:PropertyValue
56 sg:journal.1136293 schema:issn 0031-5303
57 1588-2829
58 schema:name Periodica Mathematica Hungarica
59 rdf:type schema:Periodical
60 sg:person.011534256073.49 schema:affiliation N1c23d2cf7e614c429b9404460a93151c
61 schema:familyName Fuchs
62 schema:givenName Clemens
63 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011534256073.49
64 rdf:type schema:Person
65 sg:person.012534326347.04 schema:affiliation https://www.grid.ac/institutes/grid.4808.4
66 schema:familyName Dujella
67 schema:givenName Andrej
68 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012534326347.04
69 rdf:type schema:Person
70 sg:person.015312676677.43 schema:affiliation N7c29324912d64a059fabbaf0e10c7d3f
71 schema:familyName Tichy
72 schema:givenName Robert F.
73 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015312676677.43
74 rdf:type schema:Person
75 https://doi.org/10.1017/s0305004100044418 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053910753
76 rdf:type schema:CreativeWork
77 https://doi.org/10.1017/s0305004100060497 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053829659
78 rdf:type schema:CreativeWork
79 https://doi.org/10.1017/s0305004101005515 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054089499
80 rdf:type schema:CreativeWork
81 https://doi.org/10.1515/crll.1998.049 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037504246
82 rdf:type schema:CreativeWork
83 https://doi.org/10.4064/aa-18-1-77-81 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091798147
84 rdf:type schema:CreativeWork
85 https://doi.org/10.4064/aa-65-1-15-27 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092029880
86 rdf:type schema:CreativeWork
87 https://www.grid.ac/institutes/grid.4808.4 schema:alternateName University of Zagreb
88 schema:name Department of Mathematics, University of Zagreb, Bijeniv cka cesta 30, 10000, Zagreb, Croatia
89 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...