Quantitative trait loci for agronomic and seed quality traits in an F2 and F4:6 soybean population View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2003-02

AUTHORS

A. Chapman, V.R. Pantalone, A. Ustun, F.L. Allen, D. Landau-Ellis, R.N. Trigiano, P.M. Gresshoff

ABSTRACT

Molecular breeding is becoming more practical as better technology emerges. The use of molecular markers in plant breeding for indirect selection of important traits can favorably impact breeding efficiency. The purpose of this research is to identify quantitative trait loci (QTL) on molecular linkage groups (MLG) which are associated with seed protein concentration, seed oil concentration, seed size, plant height, lodging, and maturity, in a population from a cross between the soybean cultivars ‘Essex’ and ‘Williams.’ DNA was extracted from F2 generation soybean leaves and amplified via polymerase chain reaction (PCR) using simple sequence repeat (SSR) markers. Markers that were polymorphic between the parents were analyzed against phenotypic trait data from the F2 and F4:6 generation. For the F2 population, significant additive QTL were Satt540 (MLG M, maturity, r2 = 0.11; height, r2 = 0.04, seed size, r2= 0.06], Satt373 (MLG L, seed size, r2 = 0.04; height, r2 = 0.14), Satt50 (MLG A1, maturity r2 = 0.07), Satt14 (MLG D2, oil, r2 = 0.05), and Satt251 (protein r2 = 0.03, oil, r2 =0.04). Significant dominant QTL for the F2 population were Satt540 (MLG M,height, r2 = 0.04; seed size, r2 = 0.06) and Satt14 (MLG D2, oil, r2 = 0.05). In the F4:6 generation significant additive QTL were Satt239 (MLGI, height, r2 = 0.02 at Knoxville, TN and r2 = 0.03 at Springfield, TN), Satt14 (MLG D2, seed size, r2 = 0.14 at Knoxville, TN), Satt373 (MLG L, protein, r2 = 0.04 at Knoxville, TN) and Satt251 (MLG B1, lodging r2 = 0.04 at Springfield, TN). Averaged over both environments in the F4:6 generation, significant additive QTL were identified as Satt251 (MLG B1, protein, r2 = 0.03), and Satt239 (MLG I, height, r2 = 0.03). The results found in this study indicate that selections based solely on these QTL would produce limited gains (based on low r2 values). Few QTL were detected to be stable across environments. Further research to identify stable QTL over environments is needed to make marker-assisted approaches more widely adopted by soybean breeders. More... »

PAGES

387-393

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1023/a:1022282726117

DOI

http://dx.doi.org/10.1023/a:1022282726117

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1012240626


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Tennessee at Knoxville", 
          "id": "https://www.grid.ac/institutes/grid.411461.7", 
          "name": [
            "Dep. of Plant Sciences and Landscape Systems, University of Tennessee, 2431 Center Dr., 37996-4561, Knoxville, TN, U.S.A"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chapman", 
        "givenName": "A.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Tennessee at Knoxville", 
          "id": "https://www.grid.ac/institutes/grid.411461.7", 
          "name": [
            "Dep. of Plant Sciences and Landscape Systems, University of Tennessee, 2431 Center Dr., 37996-4561, Knoxville, TN, U.S.A"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pantalone", 
        "givenName": "V.R.", 
        "id": "sg:person.01152523424.54", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01152523424.54"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Black Sea Agricultural Research Institute, P.K. 39, Samsun, Turkey"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ustun", 
        "givenName": "A.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Tennessee at Knoxville", 
          "id": "https://www.grid.ac/institutes/grid.411461.7", 
          "name": [
            "Dep. of Plant Sciences and Landscape Systems, University of Tennessee, 2431 Center Dr., 37996-4561, Knoxville, TN, U.S.A"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Allen", 
        "givenName": "F.L.", 
        "id": "sg:person.0743247172.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0743247172.37"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Tennessee at Knoxville", 
          "id": "https://www.grid.ac/institutes/grid.411461.7", 
          "name": [
            "Dep. of Plant Sciences and Landscape Systems, University of Tennessee, 2431 Center Dr., 37996-4561, Knoxville, TN, U.S.A"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Landau-Ellis", 
        "givenName": "D.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Tennessee at Knoxville", 
          "id": "https://www.grid.ac/institutes/grid.411461.7", 
          "name": [
            "University of Tennessee, 2431 Center Dr., 37996-4561, Knoxville, TN, U.S.A"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Trigiano", 
        "givenName": "R.N.", 
        "id": "sg:person.0701604117.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0701604117.49"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Queensland", 
          "id": "https://www.grid.ac/institutes/grid.1003.2", 
          "name": [
            "Department of Botany, University of Queensland, John Hines Bldg., QLD 4072, St. Lucia, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gresshoff", 
        "givenName": "P.M.", 
        "id": "sg:person.01363624355.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01363624355.34"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf02712670", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003131267", 
          "https://doi.org/10.1007/bf02712670"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02712670", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003131267", 
          "https://doi.org/10.1007/bf02712670"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00223665", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004640456", 
          "https://doi.org/10.1007/bf00223665"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00230118", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013631699", 
          "https://doi.org/10.1007/bf00230118"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00230118", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013631699", 
          "https://doi.org/10.1007/bf00230118"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00211040", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018666240", 
          "https://doi.org/10.1007/bf00211040"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00211040", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018666240", 
          "https://doi.org/10.1007/bf00211040"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.92.10.4656", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046194381"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0003-2697(91)90120-i", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050420685"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2134/agronj1983.00021962007500010041x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068991019"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2135/cropsci1972.0011183x001200050067x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069016035"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2135/cropsci1973.0011183x001300040033x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069016288"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2135/cropsci1996.0011183x003600050042x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069025203"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2135/cropsci1997.0011183x003700020011x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069025384"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2135/cropsci1999.3951464x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069026546"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2135/cropsci1999.3961642x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069026563"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2135/cropsci2000.4051438x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069026904"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2135/cropsci2001.412493x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069027147"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1077246687", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2003-02", 
    "datePublishedReg": "2003-02-01", 
    "description": "Molecular breeding is becoming more practical as better technology emerges. The use of molecular markers in plant breeding for indirect selection of important traits can favorably impact breeding efficiency. The purpose of this research is to identify quantitative trait loci (QTL) on molecular linkage groups (MLG) which are associated with seed protein concentration, seed oil concentration, seed size, plant height, lodging, and maturity, in a population from a cross between the soybean cultivars \u2018Essex\u2019 and \u2018Williams.\u2019 DNA was extracted from F2 generation soybean leaves and amplified via polymerase chain reaction (PCR) using simple sequence repeat (SSR) markers. Markers that were polymorphic between the parents were analyzed against phenotypic trait data from the F2 and F4:6 generation. For the F2 population, significant additive QTL were Satt540 (MLG M, maturity, r2 = 0.11; height, r2 = 0.04, seed size, r2= 0.06], Satt373 (MLG L, seed size, r2 = 0.04; height, r2 = 0.14), Satt50 (MLG A1, maturity r2 = 0.07), Satt14 (MLG D2, oil, r2 = 0.05), and Satt251 (protein r2 = 0.03, oil, r2 =0.04). Significant dominant QTL for the F2 population were Satt540 (MLG M,height, r2 = 0.04; seed size, r2 = 0.06) and Satt14 (MLG D2, oil, r2 = 0.05). In the F4:6 generation significant additive QTL were Satt239 (MLGI, height, r2 = 0.02 at Knoxville, TN and r2 = 0.03 at Springfield, TN), Satt14 (MLG D2, seed size, r2 = 0.14 at Knoxville, TN), Satt373 (MLG L, protein, r2 = 0.04 at Knoxville, TN) and Satt251 (MLG B1, lodging r2 = 0.04 at Springfield, TN). Averaged over both environments in the F4:6 generation, significant additive QTL were identified as Satt251 (MLG B1, protein, r2 = 0.03), and Satt239 (MLG I, height, r2 = 0.03). The results found in this study indicate that selections based solely on these QTL would produce limited gains (based on low r2 values). Few QTL were detected to be stable across environments. Further research to identify stable QTL over environments is needed to make marker-assisted approaches more widely adopted by soybean breeders.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1023/a:1022282726117", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1028679", 
        "issn": [
          "0014-2336", 
          "1573-5060"
        ], 
        "name": "Euphytica", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "129"
      }
    ], 
    "name": "Quantitative trait loci for agronomic and seed quality traits in an F2 and F4:6 soybean population", 
    "pagination": "387-393", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "3a51725bc07af4b3d24e32d983de74ba0b0fbd85a5a2d6dbc13c1fef959ef4fd"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1023/a:1022282726117"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1012240626"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1023/a:1022282726117", 
      "https://app.dimensions.ai/details/publication/pub.1012240626"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T01:58", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8700_00000504.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1023%2FA%3A1022282726117"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1023/a:1022282726117'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1023/a:1022282726117'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1023/a:1022282726117'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1023/a:1022282726117'


 

This table displays all metadata directly associated to this object as RDF triples.

157 TRIPLES      21 PREDICATES      43 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1023/a:1022282726117 schema:about anzsrc-for:06
2 anzsrc-for:0604
3 schema:author Ndb858d8ab6e94b2ab29f514613148b5c
4 schema:citation sg:pub.10.1007/bf00211040
5 sg:pub.10.1007/bf00223665
6 sg:pub.10.1007/bf00230118
7 sg:pub.10.1007/bf02712670
8 https://app.dimensions.ai/details/publication/pub.1077246687
9 https://doi.org/10.1016/0003-2697(91)90120-i
10 https://doi.org/10.1073/pnas.92.10.4656
11 https://doi.org/10.2134/agronj1983.00021962007500010041x
12 https://doi.org/10.2135/cropsci1972.0011183x001200050067x
13 https://doi.org/10.2135/cropsci1973.0011183x001300040033x
14 https://doi.org/10.2135/cropsci1996.0011183x003600050042x
15 https://doi.org/10.2135/cropsci1997.0011183x003700020011x
16 https://doi.org/10.2135/cropsci1999.3951464x
17 https://doi.org/10.2135/cropsci1999.3961642x
18 https://doi.org/10.2135/cropsci2000.4051438x
19 https://doi.org/10.2135/cropsci2001.412493x
20 schema:datePublished 2003-02
21 schema:datePublishedReg 2003-02-01
22 schema:description Molecular breeding is becoming more practical as better technology emerges. The use of molecular markers in plant breeding for indirect selection of important traits can favorably impact breeding efficiency. The purpose of this research is to identify quantitative trait loci (QTL) on molecular linkage groups (MLG) which are associated with seed protein concentration, seed oil concentration, seed size, plant height, lodging, and maturity, in a population from a cross between the soybean cultivars ‘Essex’ and ‘Williams.’ DNA was extracted from F2 generation soybean leaves and amplified via polymerase chain reaction (PCR) using simple sequence repeat (SSR) markers. Markers that were polymorphic between the parents were analyzed against phenotypic trait data from the F2 and F4:6 generation. For the F2 population, significant additive QTL were Satt540 (MLG M, maturity, r2 = 0.11; height, r2 = 0.04, seed size, r2= 0.06], Satt373 (MLG L, seed size, r2 = 0.04; height, r2 = 0.14), Satt50 (MLG A1, maturity r2 = 0.07), Satt14 (MLG D2, oil, r2 = 0.05), and Satt251 (protein r2 = 0.03, oil, r2 =0.04). Significant dominant QTL for the F2 population were Satt540 (MLG M,height, r2 = 0.04; seed size, r2 = 0.06) and Satt14 (MLG D2, oil, r2 = 0.05). In the F4:6 generation significant additive QTL were Satt239 (MLGI, height, r2 = 0.02 at Knoxville, TN and r2 = 0.03 at Springfield, TN), Satt14 (MLG D2, seed size, r2 = 0.14 at Knoxville, TN), Satt373 (MLG L, protein, r2 = 0.04 at Knoxville, TN) and Satt251 (MLG B1, lodging r2 = 0.04 at Springfield, TN). Averaged over both environments in the F4:6 generation, significant additive QTL were identified as Satt251 (MLG B1, protein, r2 = 0.03), and Satt239 (MLG I, height, r2 = 0.03). The results found in this study indicate that selections based solely on these QTL would produce limited gains (based on low r2 values). Few QTL were detected to be stable across environments. Further research to identify stable QTL over environments is needed to make marker-assisted approaches more widely adopted by soybean breeders.
23 schema:genre research_article
24 schema:inLanguage en
25 schema:isAccessibleForFree false
26 schema:isPartOf N1713017565c54cc78b7e8fa5d07381a2
27 N715cda4bac6248ecadb02df48e497982
28 sg:journal.1028679
29 schema:name Quantitative trait loci for agronomic and seed quality traits in an F2 and F4:6 soybean population
30 schema:pagination 387-393
31 schema:productId N058ff9b8973142ab8bae4406a2de61d2
32 N176d4a579d8246608d5f24843af22c68
33 N9e0301c1ca864899a23f60bfb260247f
34 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012240626
35 https://doi.org/10.1023/a:1022282726117
36 schema:sdDatePublished 2019-04-11T01:58
37 schema:sdLicense https://scigraph.springernature.com/explorer/license/
38 schema:sdPublisher Ne8a79d4fa4494dd4a066bb54564c84a9
39 schema:url http://link.springer.com/10.1023%2FA%3A1022282726117
40 sgo:license sg:explorer/license/
41 sgo:sdDataset articles
42 rdf:type schema:ScholarlyArticle
43 N058ff9b8973142ab8bae4406a2de61d2 schema:name dimensions_id
44 schema:value pub.1012240626
45 rdf:type schema:PropertyValue
46 N0dc5db5d3abf431db9f0627e39176be3 schema:affiliation N616ea27489c74e0aa89f1706005edf84
47 schema:familyName Ustun
48 schema:givenName A.
49 rdf:type schema:Person
50 N1141bbf9cb714b04b1ffb21ff27e00ad schema:affiliation https://www.grid.ac/institutes/grid.411461.7
51 schema:familyName Chapman
52 schema:givenName A.
53 rdf:type schema:Person
54 N1713017565c54cc78b7e8fa5d07381a2 schema:volumeNumber 129
55 rdf:type schema:PublicationVolume
56 N176d4a579d8246608d5f24843af22c68 schema:name readcube_id
57 schema:value 3a51725bc07af4b3d24e32d983de74ba0b0fbd85a5a2d6dbc13c1fef959ef4fd
58 rdf:type schema:PropertyValue
59 N353057cf34694cbcac3884c071812695 rdf:first Nb33684552085420baa2ed0998a99fffc
60 rdf:rest N948978d9f7324ce5ba13b56bc80d12df
61 N48c580ed630d4855afb256b2d0466d38 rdf:first sg:person.01152523424.54
62 rdf:rest N999d89d603424c09a33b3bb31dbc4750
63 N616ea27489c74e0aa89f1706005edf84 schema:name Black Sea Agricultural Research Institute, P.K. 39, Samsun, Turkey
64 rdf:type schema:Organization
65 N715cda4bac6248ecadb02df48e497982 schema:issueNumber 3
66 rdf:type schema:PublicationIssue
67 N769b2d66737b49a1b7e8c6de55d96f7e rdf:first sg:person.0743247172.37
68 rdf:rest N353057cf34694cbcac3884c071812695
69 N8e8b03c5fa444828b9ef2c85e428219d rdf:first sg:person.01363624355.34
70 rdf:rest rdf:nil
71 N948978d9f7324ce5ba13b56bc80d12df rdf:first sg:person.0701604117.49
72 rdf:rest N8e8b03c5fa444828b9ef2c85e428219d
73 N999d89d603424c09a33b3bb31dbc4750 rdf:first N0dc5db5d3abf431db9f0627e39176be3
74 rdf:rest N769b2d66737b49a1b7e8c6de55d96f7e
75 N9e0301c1ca864899a23f60bfb260247f schema:name doi
76 schema:value 10.1023/a:1022282726117
77 rdf:type schema:PropertyValue
78 Nb33684552085420baa2ed0998a99fffc schema:affiliation https://www.grid.ac/institutes/grid.411461.7
79 schema:familyName Landau-Ellis
80 schema:givenName D.
81 rdf:type schema:Person
82 Ndb858d8ab6e94b2ab29f514613148b5c rdf:first N1141bbf9cb714b04b1ffb21ff27e00ad
83 rdf:rest N48c580ed630d4855afb256b2d0466d38
84 Ne8a79d4fa4494dd4a066bb54564c84a9 schema:name Springer Nature - SN SciGraph project
85 rdf:type schema:Organization
86 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
87 schema:name Biological Sciences
88 rdf:type schema:DefinedTerm
89 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
90 schema:name Genetics
91 rdf:type schema:DefinedTerm
92 sg:journal.1028679 schema:issn 0014-2336
93 1573-5060
94 schema:name Euphytica
95 rdf:type schema:Periodical
96 sg:person.01152523424.54 schema:affiliation https://www.grid.ac/institutes/grid.411461.7
97 schema:familyName Pantalone
98 schema:givenName V.R.
99 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01152523424.54
100 rdf:type schema:Person
101 sg:person.01363624355.34 schema:affiliation https://www.grid.ac/institutes/grid.1003.2
102 schema:familyName Gresshoff
103 schema:givenName P.M.
104 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01363624355.34
105 rdf:type schema:Person
106 sg:person.0701604117.49 schema:affiliation https://www.grid.ac/institutes/grid.411461.7
107 schema:familyName Trigiano
108 schema:givenName R.N.
109 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0701604117.49
110 rdf:type schema:Person
111 sg:person.0743247172.37 schema:affiliation https://www.grid.ac/institutes/grid.411461.7
112 schema:familyName Allen
113 schema:givenName F.L.
114 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0743247172.37
115 rdf:type schema:Person
116 sg:pub.10.1007/bf00211040 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018666240
117 https://doi.org/10.1007/bf00211040
118 rdf:type schema:CreativeWork
119 sg:pub.10.1007/bf00223665 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004640456
120 https://doi.org/10.1007/bf00223665
121 rdf:type schema:CreativeWork
122 sg:pub.10.1007/bf00230118 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013631699
123 https://doi.org/10.1007/bf00230118
124 rdf:type schema:CreativeWork
125 sg:pub.10.1007/bf02712670 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003131267
126 https://doi.org/10.1007/bf02712670
127 rdf:type schema:CreativeWork
128 https://app.dimensions.ai/details/publication/pub.1077246687 schema:CreativeWork
129 https://doi.org/10.1016/0003-2697(91)90120-i schema:sameAs https://app.dimensions.ai/details/publication/pub.1050420685
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1073/pnas.92.10.4656 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046194381
132 rdf:type schema:CreativeWork
133 https://doi.org/10.2134/agronj1983.00021962007500010041x schema:sameAs https://app.dimensions.ai/details/publication/pub.1068991019
134 rdf:type schema:CreativeWork
135 https://doi.org/10.2135/cropsci1972.0011183x001200050067x schema:sameAs https://app.dimensions.ai/details/publication/pub.1069016035
136 rdf:type schema:CreativeWork
137 https://doi.org/10.2135/cropsci1973.0011183x001300040033x schema:sameAs https://app.dimensions.ai/details/publication/pub.1069016288
138 rdf:type schema:CreativeWork
139 https://doi.org/10.2135/cropsci1996.0011183x003600050042x schema:sameAs https://app.dimensions.ai/details/publication/pub.1069025203
140 rdf:type schema:CreativeWork
141 https://doi.org/10.2135/cropsci1997.0011183x003700020011x schema:sameAs https://app.dimensions.ai/details/publication/pub.1069025384
142 rdf:type schema:CreativeWork
143 https://doi.org/10.2135/cropsci1999.3951464x schema:sameAs https://app.dimensions.ai/details/publication/pub.1069026546
144 rdf:type schema:CreativeWork
145 https://doi.org/10.2135/cropsci1999.3961642x schema:sameAs https://app.dimensions.ai/details/publication/pub.1069026563
146 rdf:type schema:CreativeWork
147 https://doi.org/10.2135/cropsci2000.4051438x schema:sameAs https://app.dimensions.ai/details/publication/pub.1069026904
148 rdf:type schema:CreativeWork
149 https://doi.org/10.2135/cropsci2001.412493x schema:sameAs https://app.dimensions.ai/details/publication/pub.1069027147
150 rdf:type schema:CreativeWork
151 https://www.grid.ac/institutes/grid.1003.2 schema:alternateName University of Queensland
152 schema:name Department of Botany, University of Queensland, John Hines Bldg., QLD 4072, St. Lucia, Australia
153 rdf:type schema:Organization
154 https://www.grid.ac/institutes/grid.411461.7 schema:alternateName University of Tennessee at Knoxville
155 schema:name Dep. of Plant Sciences and Landscape Systems, University of Tennessee, 2431 Center Dr., 37996-4561, Knoxville, TN, U.S.A
156 University of Tennessee, 2431 Center Dr., 37996-4561, Knoxville, TN, U.S.A
157 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...