Nonlocal Properties of Two-Qubit Gates and Mixed States, and the Optimization of Quantum Computations View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2002-08

AUTHORS

Yuriy Makhlin

ABSTRACT

Entanglement of two parts of a quantum system is a nonlocal property unaffected by local manipulations of these parts. It can be described by quantities invariant under local unitary transformations. Here we present, for a system of two qubits, a set of invariants which provides a complete description of nonlocal properties. The set contains 18 real polynomials of the entries of the density matrix. We prove that one of two mixed states can be transformed into the other by single-qubit operations if and only if these states have equal values of all 18 invariants. Corresponding local operations can be found efficiently. Without any of these 18 invariants the set is incomplete. Similarly, nonlocal, entangling properties of two-qubit unitary gates are invariant under single-qubit operations. We present a complete set of 3 real polynomial invariants of unitary gates. Our results are useful for optimization of quantum computations since they provide an effective tool to verify if and how a given two-qubit operation can be performed using exactly one elementary two-qubit gate, implemented by a basic physical manipulation (and arbitrarily many single-qubit gates). PACS: 03.67-a; 03.67.Lx More... »

PAGES

243-252

Identifiers

URI

http://scigraph.springernature.com/pub.10.1023/a:1022144002391

DOI

http://dx.doi.org/10.1023/a:1022144002391

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1023058874


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0206", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Quantum Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Landau Institute for Theoretical Physics", 
          "id": "https://www.grid.ac/institutes/grid.436090.8", 
          "name": [
            "Institut f\u00fcr Theoretische Festk\u00f6rperphysik, Universit\u00e4t Karlsruhe, D-76128, Karlsruhe, Germany", 
            "Landau Institute for Theoretical Physics, Kosygin st. 2, 117940, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Makhlin", 
        "givenName": "Yuriy", 
        "id": "sg:person.01241142154.57", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01241142154.57"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1103/physreva.51.1015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000011298"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.51.1015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000011298"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.58.1833", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007018171"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.58.1833", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007018171"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1098/rspa.1995.0065", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008818220"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.79.2371", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009012763"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.79.2371", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009012763"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.83.243", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024863850"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.83.243", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024863850"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.52.3457", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036486855"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.52.3457", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036486855"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.60.11404", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040649869"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.60.11404", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040649869"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.57.120", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048023467"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.57.120", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048023467"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.75.346", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060812073"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.75.346", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060812073"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2002-08", 
    "datePublishedReg": "2002-08-01", 
    "description": "Entanglement of two parts of a quantum system is a nonlocal property unaffected by local manipulations of these parts. It can be described by quantities invariant under local unitary transformations. Here we present, for a system of two qubits, a set of invariants which provides a complete description of nonlocal properties. The set contains 18 real polynomials of the entries of the density matrix. We prove that one of two mixed states can be transformed into the other by single-qubit operations if and only if these states have equal values of all 18 invariants. Corresponding local operations can be found efficiently. Without any of these 18 invariants the set is incomplete. Similarly, nonlocal, entangling properties of two-qubit unitary gates are invariant under single-qubit operations. We present a complete set of 3 real polynomial invariants of unitary gates. Our results are useful for optimization of quantum computations since they provide an effective tool to verify if and how a given two-qubit operation can be performed using exactly one elementary two-qubit gate, implemented by a basic physical manipulation (and arbitrarily many single-qubit gates). PACS: 03.67-a; 03.67.Lx", 
    "genre": "research_article", 
    "id": "sg:pub.10.1023/a:1022144002391", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1052742", 
        "issn": [
          "1570-0755", 
          "1573-1332"
        ], 
        "name": "Quantum Information Processing", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "1"
      }
    ], 
    "name": "Nonlocal Properties of Two-Qubit Gates and Mixed States, and the Optimization of Quantum Computations", 
    "pagination": "243-252", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "6ddb4b0c1c9503d4347a0f62ea0b9ea109695812c7f8f540d1d92c5cc2dcf1fa"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1023/a:1022144002391"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1023058874"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1023/a:1022144002391", 
      "https://app.dimensions.ai/details/publication/pub.1023058874"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T00:14", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8695_00000505.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1023%2FA%3A1022144002391"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1023/a:1022144002391'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1023/a:1022144002391'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1023/a:1022144002391'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1023/a:1022144002391'


 

This table displays all metadata directly associated to this object as RDF triples.

89 TRIPLES      21 PREDICATES      36 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1023/a:1022144002391 schema:about anzsrc-for:02
2 anzsrc-for:0206
3 schema:author Ne58da5200ad04f849e1acd8d564f883d
4 schema:citation https://doi.org/10.1098/rspa.1995.0065
5 https://doi.org/10.1103/physreva.51.1015
6 https://doi.org/10.1103/physreva.52.3457
7 https://doi.org/10.1103/physreva.57.120
8 https://doi.org/10.1103/physreva.58.1833
9 https://doi.org/10.1103/physrevb.60.11404
10 https://doi.org/10.1103/physrevlett.75.346
11 https://doi.org/10.1103/physrevlett.79.2371
12 https://doi.org/10.1103/physrevlett.83.243
13 schema:datePublished 2002-08
14 schema:datePublishedReg 2002-08-01
15 schema:description Entanglement of two parts of a quantum system is a nonlocal property unaffected by local manipulations of these parts. It can be described by quantities invariant under local unitary transformations. Here we present, for a system of two qubits, a set of invariants which provides a complete description of nonlocal properties. The set contains 18 real polynomials of the entries of the density matrix. We prove that one of two mixed states can be transformed into the other by single-qubit operations if and only if these states have equal values of all 18 invariants. Corresponding local operations can be found efficiently. Without any of these 18 invariants the set is incomplete. Similarly, nonlocal, entangling properties of two-qubit unitary gates are invariant under single-qubit operations. We present a complete set of 3 real polynomial invariants of unitary gates. Our results are useful for optimization of quantum computations since they provide an effective tool to verify if and how a given two-qubit operation can be performed using exactly one elementary two-qubit gate, implemented by a basic physical manipulation (and arbitrarily many single-qubit gates). PACS: 03.67-a; 03.67.Lx
16 schema:genre research_article
17 schema:inLanguage en
18 schema:isAccessibleForFree true
19 schema:isPartOf N82a368728e304423b8bc188094c90725
20 Nbf5d365dc32b46e18870cf496a229fb9
21 sg:journal.1052742
22 schema:name Nonlocal Properties of Two-Qubit Gates and Mixed States, and the Optimization of Quantum Computations
23 schema:pagination 243-252
24 schema:productId N4d9b2acc94c441c5b111a865e75e5fb7
25 N938ac67217a04e308a543ca16e4366c1
26 Nf0f02c630e4f4295bee3a955ca4a27e7
27 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023058874
28 https://doi.org/10.1023/a:1022144002391
29 schema:sdDatePublished 2019-04-11T00:14
30 schema:sdLicense https://scigraph.springernature.com/explorer/license/
31 schema:sdPublisher N8aadae67751b4b3f81b4926eb7edc70c
32 schema:url http://link.springer.com/10.1023%2FA%3A1022144002391
33 sgo:license sg:explorer/license/
34 sgo:sdDataset articles
35 rdf:type schema:ScholarlyArticle
36 N4d9b2acc94c441c5b111a865e75e5fb7 schema:name doi
37 schema:value 10.1023/a:1022144002391
38 rdf:type schema:PropertyValue
39 N82a368728e304423b8bc188094c90725 schema:volumeNumber 1
40 rdf:type schema:PublicationVolume
41 N8aadae67751b4b3f81b4926eb7edc70c schema:name Springer Nature - SN SciGraph project
42 rdf:type schema:Organization
43 N938ac67217a04e308a543ca16e4366c1 schema:name dimensions_id
44 schema:value pub.1023058874
45 rdf:type schema:PropertyValue
46 Nbf5d365dc32b46e18870cf496a229fb9 schema:issueNumber 4
47 rdf:type schema:PublicationIssue
48 Ne58da5200ad04f849e1acd8d564f883d rdf:first sg:person.01241142154.57
49 rdf:rest rdf:nil
50 Nf0f02c630e4f4295bee3a955ca4a27e7 schema:name readcube_id
51 schema:value 6ddb4b0c1c9503d4347a0f62ea0b9ea109695812c7f8f540d1d92c5cc2dcf1fa
52 rdf:type schema:PropertyValue
53 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
54 schema:name Physical Sciences
55 rdf:type schema:DefinedTerm
56 anzsrc-for:0206 schema:inDefinedTermSet anzsrc-for:
57 schema:name Quantum Physics
58 rdf:type schema:DefinedTerm
59 sg:journal.1052742 schema:issn 1570-0755
60 1573-1332
61 schema:name Quantum Information Processing
62 rdf:type schema:Periodical
63 sg:person.01241142154.57 schema:affiliation https://www.grid.ac/institutes/grid.436090.8
64 schema:familyName Makhlin
65 schema:givenName Yuriy
66 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01241142154.57
67 rdf:type schema:Person
68 https://doi.org/10.1098/rspa.1995.0065 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008818220
69 rdf:type schema:CreativeWork
70 https://doi.org/10.1103/physreva.51.1015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000011298
71 rdf:type schema:CreativeWork
72 https://doi.org/10.1103/physreva.52.3457 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036486855
73 rdf:type schema:CreativeWork
74 https://doi.org/10.1103/physreva.57.120 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048023467
75 rdf:type schema:CreativeWork
76 https://doi.org/10.1103/physreva.58.1833 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007018171
77 rdf:type schema:CreativeWork
78 https://doi.org/10.1103/physrevb.60.11404 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040649869
79 rdf:type schema:CreativeWork
80 https://doi.org/10.1103/physrevlett.75.346 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060812073
81 rdf:type schema:CreativeWork
82 https://doi.org/10.1103/physrevlett.79.2371 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009012763
83 rdf:type schema:CreativeWork
84 https://doi.org/10.1103/physrevlett.83.243 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024863850
85 rdf:type schema:CreativeWork
86 https://www.grid.ac/institutes/grid.436090.8 schema:alternateName Landau Institute for Theoretical Physics
87 schema:name Institut für Theoretische Festkörperphysik, Universität Karlsruhe, D-76128, Karlsruhe, Germany
88 Landau Institute for Theoretical Physics, Kosygin st. 2, 117940, Moscow, Russia
89 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...