El Niño Impact on Polar Motion Prediction Errors View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2001-10

AUTHORS

W. Kosek, D.D. McCarthy, B.J. Luzum

ABSTRACT

The polar motion prediction is computed as a least-squares extrapolation of the polar motion data. The least-squares model consists of a Chandler circle with constant or variable amplitude, annual and semiannual ellipses, and a bias. The model with constant amplitude of the Chandler oscillation is fit to the last three years of polar motion data and the model with variable amplitude of the Chandler oscillation is fit to the whole time series ranging from 1973.0 to 2001.1. The variable amplitude of the Chandler oscillation is modeled from the envelope of the Chandler oscillation filtered by the Fourier transform band pass filter from the long-term IERS EOPC01 polar motion series. The accuracy of the polar motion prediction depends mostly on the phase variation of the annual oscillation, which is treated as a constant in the least-squares adjustment. There were two significant changes of the annual oscillation phase of the order of 30° before the two El Niño events in 1982/83 and 1997/98. More... »

PAGES

347-361

Identifiers

URI

http://scigraph.springernature.com/pub.10.1023/a:1022073503034

DOI

http://dx.doi.org/10.1023/a:1022073503034

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1044222906


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Earth Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Space Research Centre, Polish Academy of Sciences, Warsaw, Poland", 
          "id": "http://www.grid.ac/institutes/grid.423929.7", 
          "name": [
            "Space Research Centre, Polish Academy of Sciences, Warsaw, Poland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kosek", 
        "givenName": "W.", 
        "id": "sg:person.016673725226.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016673725226.31"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "U.S. Naval Observatory, Washington D.C., USA", 
          "id": "http://www.grid.ac/institutes/grid.440354.2", 
          "name": [
            "U.S. Naval Observatory, Washington D.C., USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "McCarthy", 
        "givenName": "D.D.", 
        "id": "sg:person.013045417717.11", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013045417717.11"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "U.S. Naval Observatory, Washington D.C., USA", 
          "id": "http://www.grid.ac/institutes/grid.440354.2", 
          "name": [
            "U.S. Naval Observatory, Washington D.C., USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Luzum", 
        "givenName": "B.J.", 
        "id": "sg:person.013425367265.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013425367265.29"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf00806339", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039961201", 
          "https://doi.org/10.1007/bf00806339"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02525586", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045949269", 
          "https://doi.org/10.1007/bf02525586"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/334115a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040927970", 
          "https://doi.org/10.1038/334115a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s001900050021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054512887", 
          "https://doi.org/10.1007/s001900050021"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1006769727728", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045907662", 
          "https://doi.org/10.1023/a:1006769727728"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1006637700216", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025505362", 
          "https://doi.org/10.1023/a:1006637700216"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s001900000133", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009871995", 
          "https://doi.org/10.1007/s001900000133"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02519342", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036375978", 
          "https://doi.org/10.1007/bf02519342"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s001900050160", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029209225", 
          "https://doi.org/10.1007/s001900050160"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00806338", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024504339", 
          "https://doi.org/10.1007/bf00806338"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00806744", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043342983", 
          "https://doi.org/10.1007/bf00806744"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-94-010-3308-4_7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000643730", 
          "https://doi.org/10.1007/978-94-010-3308-4_7"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2001-10", 
    "datePublishedReg": "2001-10-01", 
    "description": "The polar motion prediction is computed as a least-squares extrapolation of the polar motion data. The least-squares model consists of a Chandler circle with constant or variable amplitude, annual and semiannual ellipses, and a bias. The model with constant amplitude of the Chandler oscillation is fit to the last three years of polar motion data and the model with variable amplitude of the Chandler oscillation is fit to the whole time series ranging from 1973.0 to 2001.1. The variable amplitude of the Chandler oscillation is modeled from the envelope of the Chandler oscillation filtered by the Fourier transform band pass filter from the long-term IERS EOPC01 polar motion series. The accuracy of the polar motion prediction depends mostly on the phase variation of the annual oscillation, which is treated as a constant in the least-squares adjustment. There were two significant changes of the annual oscillation phase of the order of 30\u00b0 before the two El Ni\u00f1o events in 1982/83 and 1997/98.", 
    "genre": "article", 
    "id": "sg:pub.10.1023/a:1022073503034", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136748", 
        "issn": [
          "0039-3169", 
          "1573-1626"
        ], 
        "name": "Studia Geophysica et Geodaetica", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "45"
      }
    ], 
    "keywords": [
      "polar motion prediction", 
      "variable amplitude", 
      "motion prediction", 
      "polar motion data", 
      "band-pass filter", 
      "polar motion series", 
      "motion prediction error", 
      "pass filter", 
      "motion data", 
      "Fourier Transform Band Pass Filter", 
      "constant amplitude", 
      "least squares adjustment", 
      "phase variation", 
      "Chandler oscillation", 
      "prediction error", 
      "oscillations", 
      "least squares extrapolation", 
      "amplitude", 
      "filter", 
      "prediction", 
      "model", 
      "oscillation phase", 
      "annual oscillation", 
      "time series", 
      "whole time series", 
      "accuracy", 
      "phase", 
      "error", 
      "envelope", 
      "order", 
      "least squares model", 
      "series", 
      "variation", 
      "extrapolation", 
      "constants", 
      "El Ni\u00f1o events", 
      "El Ni\u00f1o impact", 
      "data", 
      "ellipses", 
      "Ni\u00f1o events", 
      "impact", 
      "bias", 
      "significant changes", 
      "changes", 
      "adjustment", 
      "circle", 
      "events", 
      "years"
    ], 
    "name": "El Ni\u00f1o Impact on Polar Motion Prediction Errors", 
    "pagination": "347-361", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1044222906"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1023/a:1022073503034"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1023/a:1022073503034", 
      "https://app.dimensions.ai/details/publication/pub.1044222906"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-05-20T07:21", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_332.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1023/a:1022073503034"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1023/a:1022073503034'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1023/a:1022073503034'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1023/a:1022073503034'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1023/a:1022073503034'


 

This table displays all metadata directly associated to this object as RDF triples.

171 TRIPLES      22 PREDICATES      86 URIs      66 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1023/a:1022073503034 schema:about anzsrc-for:04
2 anzsrc-for:09
3 schema:author N4a80945f688c4b9792aca6b0665fc255
4 schema:citation sg:pub.10.1007/978-94-010-3308-4_7
5 sg:pub.10.1007/bf00806338
6 sg:pub.10.1007/bf00806339
7 sg:pub.10.1007/bf00806744
8 sg:pub.10.1007/bf02519342
9 sg:pub.10.1007/bf02525586
10 sg:pub.10.1007/s001900000133
11 sg:pub.10.1007/s001900050021
12 sg:pub.10.1007/s001900050160
13 sg:pub.10.1023/a:1006637700216
14 sg:pub.10.1023/a:1006769727728
15 sg:pub.10.1038/334115a0
16 schema:datePublished 2001-10
17 schema:datePublishedReg 2001-10-01
18 schema:description The polar motion prediction is computed as a least-squares extrapolation of the polar motion data. The least-squares model consists of a Chandler circle with constant or variable amplitude, annual and semiannual ellipses, and a bias. The model with constant amplitude of the Chandler oscillation is fit to the last three years of polar motion data and the model with variable amplitude of the Chandler oscillation is fit to the whole time series ranging from 1973.0 to 2001.1. The variable amplitude of the Chandler oscillation is modeled from the envelope of the Chandler oscillation filtered by the Fourier transform band pass filter from the long-term IERS EOPC01 polar motion series. The accuracy of the polar motion prediction depends mostly on the phase variation of the annual oscillation, which is treated as a constant in the least-squares adjustment. There were two significant changes of the annual oscillation phase of the order of 30° before the two El Niño events in 1982/83 and 1997/98.
19 schema:genre article
20 schema:inLanguage en
21 schema:isAccessibleForFree false
22 schema:isPartOf N210f8b3572644b8e97a3133cd6fef610
23 Ndd51c9167d034af3a4e97d75c0e8626c
24 sg:journal.1136748
25 schema:keywords Chandler oscillation
26 El Niño events
27 El Niño impact
28 Fourier Transform Band Pass Filter
29 Niño events
30 accuracy
31 adjustment
32 amplitude
33 annual oscillation
34 band-pass filter
35 bias
36 changes
37 circle
38 constant amplitude
39 constants
40 data
41 ellipses
42 envelope
43 error
44 events
45 extrapolation
46 filter
47 impact
48 least squares adjustment
49 least squares extrapolation
50 least squares model
51 model
52 motion data
53 motion prediction
54 motion prediction error
55 order
56 oscillation phase
57 oscillations
58 pass filter
59 phase
60 phase variation
61 polar motion data
62 polar motion prediction
63 polar motion series
64 prediction
65 prediction error
66 series
67 significant changes
68 time series
69 variable amplitude
70 variation
71 whole time series
72 years
73 schema:name El Niño Impact on Polar Motion Prediction Errors
74 schema:pagination 347-361
75 schema:productId N66dac17563344a6d8c17143a2ae1cbd5
76 Nca3915c81a1f4f6da6d478a2d7cb2d8e
77 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044222906
78 https://doi.org/10.1023/a:1022073503034
79 schema:sdDatePublished 2022-05-20T07:21
80 schema:sdLicense https://scigraph.springernature.com/explorer/license/
81 schema:sdPublisher Ne168aeeab21e4a68b92c3e669e8f4645
82 schema:url https://doi.org/10.1023/a:1022073503034
83 sgo:license sg:explorer/license/
84 sgo:sdDataset articles
85 rdf:type schema:ScholarlyArticle
86 N210f8b3572644b8e97a3133cd6fef610 schema:issueNumber 4
87 rdf:type schema:PublicationIssue
88 N4a80945f688c4b9792aca6b0665fc255 rdf:first sg:person.016673725226.31
89 rdf:rest Nc0d2e1eff44f439eb439c8b25dae368e
90 N66dac17563344a6d8c17143a2ae1cbd5 schema:name dimensions_id
91 schema:value pub.1044222906
92 rdf:type schema:PropertyValue
93 Nc0d2e1eff44f439eb439c8b25dae368e rdf:first sg:person.013045417717.11
94 rdf:rest Nc439d5dcc435430383e7c893d13a1d6e
95 Nc439d5dcc435430383e7c893d13a1d6e rdf:first sg:person.013425367265.29
96 rdf:rest rdf:nil
97 Nca3915c81a1f4f6da6d478a2d7cb2d8e schema:name doi
98 schema:value 10.1023/a:1022073503034
99 rdf:type schema:PropertyValue
100 Ndd51c9167d034af3a4e97d75c0e8626c schema:volumeNumber 45
101 rdf:type schema:PublicationVolume
102 Ne168aeeab21e4a68b92c3e669e8f4645 schema:name Springer Nature - SN SciGraph project
103 rdf:type schema:Organization
104 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
105 schema:name Earth Sciences
106 rdf:type schema:DefinedTerm
107 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
108 schema:name Engineering
109 rdf:type schema:DefinedTerm
110 sg:journal.1136748 schema:issn 0039-3169
111 1573-1626
112 schema:name Studia Geophysica et Geodaetica
113 schema:publisher Springer Nature
114 rdf:type schema:Periodical
115 sg:person.013045417717.11 schema:affiliation grid-institutes:grid.440354.2
116 schema:familyName McCarthy
117 schema:givenName D.D.
118 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013045417717.11
119 rdf:type schema:Person
120 sg:person.013425367265.29 schema:affiliation grid-institutes:grid.440354.2
121 schema:familyName Luzum
122 schema:givenName B.J.
123 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013425367265.29
124 rdf:type schema:Person
125 sg:person.016673725226.31 schema:affiliation grid-institutes:grid.423929.7
126 schema:familyName Kosek
127 schema:givenName W.
128 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016673725226.31
129 rdf:type schema:Person
130 sg:pub.10.1007/978-94-010-3308-4_7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000643730
131 https://doi.org/10.1007/978-94-010-3308-4_7
132 rdf:type schema:CreativeWork
133 sg:pub.10.1007/bf00806338 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024504339
134 https://doi.org/10.1007/bf00806338
135 rdf:type schema:CreativeWork
136 sg:pub.10.1007/bf00806339 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039961201
137 https://doi.org/10.1007/bf00806339
138 rdf:type schema:CreativeWork
139 sg:pub.10.1007/bf00806744 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043342983
140 https://doi.org/10.1007/bf00806744
141 rdf:type schema:CreativeWork
142 sg:pub.10.1007/bf02519342 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036375978
143 https://doi.org/10.1007/bf02519342
144 rdf:type schema:CreativeWork
145 sg:pub.10.1007/bf02525586 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045949269
146 https://doi.org/10.1007/bf02525586
147 rdf:type schema:CreativeWork
148 sg:pub.10.1007/s001900000133 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009871995
149 https://doi.org/10.1007/s001900000133
150 rdf:type schema:CreativeWork
151 sg:pub.10.1007/s001900050021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054512887
152 https://doi.org/10.1007/s001900050021
153 rdf:type schema:CreativeWork
154 sg:pub.10.1007/s001900050160 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029209225
155 https://doi.org/10.1007/s001900050160
156 rdf:type schema:CreativeWork
157 sg:pub.10.1023/a:1006637700216 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025505362
158 https://doi.org/10.1023/a:1006637700216
159 rdf:type schema:CreativeWork
160 sg:pub.10.1023/a:1006769727728 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045907662
161 https://doi.org/10.1023/a:1006769727728
162 rdf:type schema:CreativeWork
163 sg:pub.10.1038/334115a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040927970
164 https://doi.org/10.1038/334115a0
165 rdf:type schema:CreativeWork
166 grid-institutes:grid.423929.7 schema:alternateName Space Research Centre, Polish Academy of Sciences, Warsaw, Poland
167 schema:name Space Research Centre, Polish Academy of Sciences, Warsaw, Poland
168 rdf:type schema:Organization
169 grid-institutes:grid.440354.2 schema:alternateName U.S. Naval Observatory, Washington D.C., USA
170 schema:name U.S. Naval Observatory, Washington D.C., USA
171 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...