Barrier Trees on Poset-Valued Landscapes View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2003-03

AUTHORS

Peter F. Stadler, Christoph Flamm

ABSTRACT

Fitness landscapes have proved to be a valuable concept in evolutionary biology, combinatorial optimization, and the physics of disordered systems. Usually, a fitness landscape is considered as a mapping from a configuration space equipped with some notion of adjacency, nearness, distance, or accessibility, into the real numbers. In the context of multi-objective optimization problems this concept can be extended to poset-valued landscapes. In a geometric analysis of such a structure, local Pareto points take on the role of local minima. We show that the notion of saddle points, barriers, and basins can be extended to the poset-valued case in a meaningful way and describe an algorithm that efficiently extracts these features from an exhaustive enumeration of a given generalized landscape. More... »

PAGES

7-20

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1023/a:1021821009420

DOI

http://dx.doi.org/10.1023/a:1021821009420

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1020303641


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0802", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Computation Theory and Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Santa Fe Institute", 
          "id": "https://www.grid.ac/institutes/grid.209665.e", 
          "name": [
            "Institut f\u00fcr Theoretische Chemie und Molekulare Strukturbiologie, Universit\u00e4t Wien, W\u00e4hringerstrasse 17, A-1090, Wien, Austria", 
            "Bioinformatik, Institut f\u00fcr Informatik, Universit\u00e4t Leipzig, Kreuzstra\u00dfe 7b, D-04103, Leipzig, Germany", 
            "Santa Fe Institute, 1399 Hyde Park Rd., Santa Fe, NM o[87501, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Stadler", 
        "givenName": "Peter F.", 
        "id": "sg:person.0664150133.70", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0664150133.70"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Vienna", 
          "id": "https://www.grid.ac/institutes/grid.10420.37", 
          "name": [
            "Institut f\u00fcr Theoretische Chemie und Molekulare Strukturbiologie, Universit\u00e4t Wien, W\u00e4hringerstrasse 17, A-1090, Wien, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Flamm", 
        "givenName": "Christoph", 
        "id": "sg:person.01110764033.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01110764033.35"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1145/358923.358929", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009609425"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s002910000046", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013349405", 
          "https://doi.org/10.1007/s002910000046"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s002910000046", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013349405", 
          "https://doi.org/10.1007/s002910000046"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1524/zpch.2002.216.2.155", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030320705"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1162/106365600568158", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034545522"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jmbi.1999.2700", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034604829"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00810881", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036019856", 
          "https://doi.org/10.1007/bf00810881"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/321906.321910", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044570025"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/29487", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045469443", 
          "https://doi.org/10.1038/29487"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/29487", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045469443", 
          "https://doi.org/10.1038/29487"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02459506", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052391942", 
          "https://doi.org/10.1007/bf02459506"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02459506", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052391942", 
          "https://doi.org/10.1007/bf02459506"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s1355838200992161", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054923556"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0305-4470/21/5/004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059069922"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.58.765", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060839105"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.58.765", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060839105"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/s0036144501395952", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062877772"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/s0036144501395952", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062877772"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/s0219525999000059", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062998794"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2003-03", 
    "datePublishedReg": "2003-03-01", 
    "description": "Fitness landscapes have proved to be a valuable concept in evolutionary biology, combinatorial optimization, and the physics of disordered systems. Usually, a fitness landscape is considered as a mapping from a configuration space equipped with some notion of adjacency, nearness, distance, or accessibility, into the real numbers. In the context of multi-objective optimization problems this concept can be extended to poset-valued landscapes. In a geometric analysis of such a structure, local Pareto points take on the role of local minima. We show that the notion of saddle points, barriers, and basins can be extended to the poset-valued case in a meaningful way and describe an algorithm that efficiently extracts these features from an exhaustive enumeration of a given generalized landscape.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1023/a:1021821009420", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1053156", 
        "issn": [
          "1389-2576", 
          "1573-7632"
        ], 
        "name": "Genetic Programming and Evolvable Machines", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "4"
      }
    ], 
    "name": "Barrier Trees on Poset-Valued Landscapes", 
    "pagination": "7-20", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "60bdfb2399fea681e2ea247bb809d549c706ed14690702c3a1f442b2827e40e2"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1023/a:1021821009420"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1020303641"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1023/a:1021821009420", 
      "https://app.dimensions.ai/details/publication/pub.1020303641"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T14:59", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8663_00000504.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1023%2FA%3A1021821009420"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1023/a:1021821009420'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1023/a:1021821009420'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1023/a:1021821009420'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1023/a:1021821009420'


 

This table displays all metadata directly associated to this object as RDF triples.

119 TRIPLES      21 PREDICATES      41 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1023/a:1021821009420 schema:about anzsrc-for:08
2 anzsrc-for:0802
3 schema:author N493c3549b27a4d1983761c7dcbffc87f
4 schema:citation sg:pub.10.1007/bf00810881
5 sg:pub.10.1007/bf02459506
6 sg:pub.10.1007/s002910000046
7 sg:pub.10.1038/29487
8 https://doi.org/10.1006/jmbi.1999.2700
9 https://doi.org/10.1017/s1355838200992161
10 https://doi.org/10.1088/0305-4470/21/5/004
11 https://doi.org/10.1103/revmodphys.58.765
12 https://doi.org/10.1137/s0036144501395952
13 https://doi.org/10.1142/s0219525999000059
14 https://doi.org/10.1145/321906.321910
15 https://doi.org/10.1145/358923.358929
16 https://doi.org/10.1162/106365600568158
17 https://doi.org/10.1524/zpch.2002.216.2.155
18 schema:datePublished 2003-03
19 schema:datePublishedReg 2003-03-01
20 schema:description Fitness landscapes have proved to be a valuable concept in evolutionary biology, combinatorial optimization, and the physics of disordered systems. Usually, a fitness landscape is considered as a mapping from a configuration space equipped with some notion of adjacency, nearness, distance, or accessibility, into the real numbers. In the context of multi-objective optimization problems this concept can be extended to poset-valued landscapes. In a geometric analysis of such a structure, local Pareto points take on the role of local minima. We show that the notion of saddle points, barriers, and basins can be extended to the poset-valued case in a meaningful way and describe an algorithm that efficiently extracts these features from an exhaustive enumeration of a given generalized landscape.
21 schema:genre research_article
22 schema:inLanguage en
23 schema:isAccessibleForFree false
24 schema:isPartOf N9ec77321fc784d67bab1e5e08272fd39
25 Nd549993802a243a2990610f5dacbfc1c
26 sg:journal.1053156
27 schema:name Barrier Trees on Poset-Valued Landscapes
28 schema:pagination 7-20
29 schema:productId N19573c8b563948ed9ed25ec95d9a523b
30 N84c1259408154c88b3839533718743f1
31 Nfbe62c1a0e6445d0b69212f7ca1c68e7
32 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020303641
33 https://doi.org/10.1023/a:1021821009420
34 schema:sdDatePublished 2019-04-10T14:59
35 schema:sdLicense https://scigraph.springernature.com/explorer/license/
36 schema:sdPublisher N7bbe79a6171d47e18032993b63593aad
37 schema:url http://link.springer.com/10.1023%2FA%3A1021821009420
38 sgo:license sg:explorer/license/
39 sgo:sdDataset articles
40 rdf:type schema:ScholarlyArticle
41 N19573c8b563948ed9ed25ec95d9a523b schema:name doi
42 schema:value 10.1023/a:1021821009420
43 rdf:type schema:PropertyValue
44 N493c3549b27a4d1983761c7dcbffc87f rdf:first sg:person.0664150133.70
45 rdf:rest Ne6c3fc1639aa45a890327a6360dc8118
46 N7bbe79a6171d47e18032993b63593aad schema:name Springer Nature - SN SciGraph project
47 rdf:type schema:Organization
48 N84c1259408154c88b3839533718743f1 schema:name dimensions_id
49 schema:value pub.1020303641
50 rdf:type schema:PropertyValue
51 N9ec77321fc784d67bab1e5e08272fd39 schema:volumeNumber 4
52 rdf:type schema:PublicationVolume
53 Nd549993802a243a2990610f5dacbfc1c schema:issueNumber 1
54 rdf:type schema:PublicationIssue
55 Ne6c3fc1639aa45a890327a6360dc8118 rdf:first sg:person.01110764033.35
56 rdf:rest rdf:nil
57 Nfbe62c1a0e6445d0b69212f7ca1c68e7 schema:name readcube_id
58 schema:value 60bdfb2399fea681e2ea247bb809d549c706ed14690702c3a1f442b2827e40e2
59 rdf:type schema:PropertyValue
60 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
61 schema:name Information and Computing Sciences
62 rdf:type schema:DefinedTerm
63 anzsrc-for:0802 schema:inDefinedTermSet anzsrc-for:
64 schema:name Computation Theory and Mathematics
65 rdf:type schema:DefinedTerm
66 sg:journal.1053156 schema:issn 1389-2576
67 1573-7632
68 schema:name Genetic Programming and Evolvable Machines
69 rdf:type schema:Periodical
70 sg:person.01110764033.35 schema:affiliation https://www.grid.ac/institutes/grid.10420.37
71 schema:familyName Flamm
72 schema:givenName Christoph
73 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01110764033.35
74 rdf:type schema:Person
75 sg:person.0664150133.70 schema:affiliation https://www.grid.ac/institutes/grid.209665.e
76 schema:familyName Stadler
77 schema:givenName Peter F.
78 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0664150133.70
79 rdf:type schema:Person
80 sg:pub.10.1007/bf00810881 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036019856
81 https://doi.org/10.1007/bf00810881
82 rdf:type schema:CreativeWork
83 sg:pub.10.1007/bf02459506 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052391942
84 https://doi.org/10.1007/bf02459506
85 rdf:type schema:CreativeWork
86 sg:pub.10.1007/s002910000046 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013349405
87 https://doi.org/10.1007/s002910000046
88 rdf:type schema:CreativeWork
89 sg:pub.10.1038/29487 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045469443
90 https://doi.org/10.1038/29487
91 rdf:type schema:CreativeWork
92 https://doi.org/10.1006/jmbi.1999.2700 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034604829
93 rdf:type schema:CreativeWork
94 https://doi.org/10.1017/s1355838200992161 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054923556
95 rdf:type schema:CreativeWork
96 https://doi.org/10.1088/0305-4470/21/5/004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059069922
97 rdf:type schema:CreativeWork
98 https://doi.org/10.1103/revmodphys.58.765 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060839105
99 rdf:type schema:CreativeWork
100 https://doi.org/10.1137/s0036144501395952 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062877772
101 rdf:type schema:CreativeWork
102 https://doi.org/10.1142/s0219525999000059 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062998794
103 rdf:type schema:CreativeWork
104 https://doi.org/10.1145/321906.321910 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044570025
105 rdf:type schema:CreativeWork
106 https://doi.org/10.1145/358923.358929 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009609425
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1162/106365600568158 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034545522
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1524/zpch.2002.216.2.155 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030320705
111 rdf:type schema:CreativeWork
112 https://www.grid.ac/institutes/grid.10420.37 schema:alternateName University of Vienna
113 schema:name Institut für Theoretische Chemie und Molekulare Strukturbiologie, Universität Wien, Währingerstrasse 17, A-1090, Wien, Austria
114 rdf:type schema:Organization
115 https://www.grid.ac/institutes/grid.209665.e schema:alternateName Santa Fe Institute
116 schema:name Bioinformatik, Institut für Informatik, Universität Leipzig, Kreuzstraße 7b, D-04103, Leipzig, Germany
117 Institut für Theoretische Chemie und Molekulare Strukturbiologie, Universität Wien, Währingerstrasse 17, A-1090, Wien, Austria
118 Santa Fe Institute, 1399 Hyde Park Rd., Santa Fe, NM o[87501, USA
119 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...