Optimal Control of a Ship for Course Change and Sidestep Maneuvers View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1999-11

AUTHORS

A. Miele, T. Wang, C. S. Chao, J. B. Dabney

ABSTRACT

We consider a ship subject to kinematic, dynamic, and moment equations and steered via rudder under the assumptions that the rudder angle and rudder angle time rate are subject to upper and lower bounds. We formulate and solve four Mayer problems of optimal control, the optimization criterion being the minimum time.Problems P1 and P2 deal with course change maneuvers. In Problem P1, a ship initially in quasi-steady state must reach the final point with a given yaw angle and zero yaw angle time rate. Problem P2 differs from Problem P1 in that the additional requirement of quasi-steady state is imposed at the final point.Problems P3 and P4 deal with sidestep maneuvers. In Problem P3, a ship initially in quasi-steady state must reach the final point with a given lateral distance, zero yaw angle, and zero yaw angle time rate. Problem P4 differs from Problem P3 in that the additional requirement of quasi-steady state is imposed at the final point.The above Mayer problems are solved via the sequential gradient-restoration algorithm in conjunction with a new singularity avoiding transformation which accounts automatically for the bounds on rudder angle and rudder angle time rate.The optimal control histories involve multiple subarcs along which either the rudder angle is kept at one of the extreme positions or the rudder angle time rate is held at one of the extreme values. In problems where quasi-steady state is imposed at the final point, there is a higher number of subarcs than in problems where quasi-steady state is not imposed; the higher number of subarcs is due to the additional requirement that the lateral velocity and rudder angle vanish at the final point. More... »

PAGES

259-282

References to SciGraph publications

  • 1970-04. Sequential gradient-restoration algorithm for optimal control problems in JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS
  • 1975-12. Recent advances in gradient algorithms for optimal control problems in JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS
  • 1988-01. Time optimal control computation with application to ship steering in JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS
  • 1997-04. Collision Avoidance by a Ship with a Moving Obstacle: Computation of Feasible Command Strategies in JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS
  • 1986-04. Optimal take-off trajectories in the presence of windshear in JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS
  • 1998-06. Optimal Ascent Trajectories and Feasibility of Next-Generation Orbital Spacecraft in JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS
  • 1998-05. Optimal Control of a Ship for a Course-Changing Maneuver in JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS
  • 1978-11. Sequential gradient-restoration algorithm for optimal control problems with general boundary conditions in JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS
  • 1993-06. On the control and guidance of the motion of an immersed body: Some problems in stochastic control in JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1023/a:1021796501467

    DOI

    http://dx.doi.org/10.1023/a:1021796501467

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1043428395


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Applied Mathematics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Aerospace Sciences, and Mathematical Sciences, Rice University, Houston, Texas", 
              "id": "http://www.grid.ac/institutes/grid.21940.3e", 
              "name": [
                "Aerospace Sciences, and Mathematical Sciences, Rice University, Houston, Texas"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Miele", 
            "givenName": "A.", 
            "id": "sg:person.015552732657.49", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015552732657.49"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Aero-Astronautics Group, Rice University, Houston, Texas", 
              "id": "http://www.grid.ac/institutes/grid.21940.3e", 
              "name": [
                "Aero-Astronautics Group, Rice University, Houston, Texas"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wang", 
            "givenName": "T.", 
            "id": "sg:person.014414570607.44", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014414570607.44"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Chung Cheng Institute of Technology, Ta-Shi, Tao-Yuan, Taiwan, ROC", 
              "id": "http://www.grid.ac/institutes/grid.440380.b", 
              "name": [
                "Aero-Astronautics Group, Rice University, Houston, Texas;", 
                "Chung Cheng Institute of Technology, Ta-Shi, Tao-Yuan, Taiwan, ROC"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Chao", 
            "givenName": "C. S.", 
            "id": "sg:person.07674216745.24", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07674216745.24"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Mechanical Engineering Department, Rice University, Houston, Texas", 
              "id": "http://www.grid.ac/institutes/grid.21940.3e", 
              "name": [
                "Mechanical Engineering Department, Rice University, Houston, Texas"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Dabney", 
            "givenName": "J. B.", 
            "id": "sg:person.0750321724.09", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0750321724.09"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf00932781", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017158292", 
              "https://doi.org/10.1007/bf00932781"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1022674516570", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052925605", 
              "https://doi.org/10.1023/a:1022674516570"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00940453", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007878986", 
              "https://doi.org/10.1007/bf00940453"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1022693600078", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024125529", 
              "https://doi.org/10.1023/a:1022693600078"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00938530", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042215967", 
              "https://doi.org/10.1007/bf00938530"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00927913", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010952160", 
              "https://doi.org/10.1007/bf00927913"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00933463", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007322541", 
              "https://doi.org/10.1007/bf00933463"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00939246", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016081985", 
              "https://doi.org/10.1007/bf00939246"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1022633924359", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036016843", 
              "https://doi.org/10.1023/a:1022633924359"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1999-11", 
        "datePublishedReg": "1999-11-01", 
        "description": "We consider a ship subject to kinematic, dynamic, and moment equations and steered via rudder under the assumptions that the rudder angle and rudder angle time rate are subject to upper and lower bounds. We formulate and solve four Mayer problems of optimal control, the optimization criterion being the minimum time.Problems P1 and P2 deal with course change maneuvers. In Problem P1, a ship initially in quasi-steady state must reach the final point with a given yaw angle and zero yaw angle time rate. Problem P2 differs from Problem P1 in that the additional requirement of quasi-steady state is imposed at the final point.Problems P3 and P4 deal with sidestep maneuvers. In Problem P3, a ship initially in quasi-steady state must reach the final point with a given lateral distance, zero yaw angle, and zero yaw angle time rate. Problem P4 differs from Problem P3 in that the additional requirement of quasi-steady state is imposed at the final point.The above Mayer problems are solved via the sequential gradient-restoration algorithm in conjunction with a new singularity avoiding transformation which accounts automatically for the bounds on rudder angle and rudder angle time rate.The optimal control histories involve multiple subarcs along which either the rudder angle is kept at one of the extreme positions or the rudder angle time rate is held at one of the extreme values. In problems where quasi-steady state is imposed at the final point, there is a higher number of subarcs than in problems where quasi-steady state is not imposed; the higher number of subarcs is due to the additional requirement that the lateral velocity and rudder angle vanish at the final point.", 
        "genre": "article", 
        "id": "sg:pub.10.1023/a:1021796501467", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1044187", 
            "issn": [
              "0022-3239", 
              "1573-2878"
            ], 
            "name": "Journal of Optimization Theory and Applications", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "2", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "103"
          }
        ], 
        "keywords": [
          "Problems P3", 
          "Mayer problem", 
          "Problem P1", 
          "optimal control", 
          "rudder angle", 
          "quasi-steady state", 
          "optimal control history", 
          "sequential gradient-restoration algorithm", 
          "gradient-restoration algorithm", 
          "course-changing maneuvers", 
          "time rate", 
          "multiple subarcs", 
          "final point", 
          "moment equations", 
          "Problem P2", 
          "new singularities", 
          "optimization criteria", 
          "lower bounds", 
          "sidestep manoeuvre", 
          "subarcs", 
          "yaw angle", 
          "control history", 
          "additional requirements", 
          "bounds", 
          "lateral velocity", 
          "extreme values", 
          "minimum time", 
          "problem", 
          "change maneuver", 
          "equations", 
          "singularity", 
          "ship", 
          "point", 
          "angle", 
          "rudder", 
          "algorithm", 
          "state", 
          "velocity", 
          "assumption", 
          "number", 
          "maneuvers", 
          "lateral distance", 
          "extreme positions", 
          "control", 
          "transformation", 
          "distance", 
          "requirements", 
          "conjunction", 
          "criteria", 
          "position", 
          "deal", 
          "values", 
          "time", 
          "rate", 
          "higher number", 
          "course changes", 
          "P2", 
          "P1", 
          "P3", 
          "P4", 
          "changes", 
          "history"
        ], 
        "name": "Optimal Control of a Ship for Course Change and Sidestep Maneuvers", 
        "pagination": "259-282", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1043428395"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1023/a:1021796501467"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1023/a:1021796501467", 
          "https://app.dimensions.ai/details/publication/pub.1043428395"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-12-01T06:22", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_342.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1023/a:1021796501467"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1023/a:1021796501467'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1023/a:1021796501467'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1023/a:1021796501467'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1023/a:1021796501467'


     

    This table displays all metadata directly associated to this object as RDF triples.

    184 TRIPLES      21 PREDICATES      96 URIs      79 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1023/a:1021796501467 schema:about anzsrc-for:01
    2 anzsrc-for:0102
    3 schema:author N318de5314d49449dad06e23b1c52d49a
    4 schema:citation sg:pub.10.1007/bf00927913
    5 sg:pub.10.1007/bf00932781
    6 sg:pub.10.1007/bf00933463
    7 sg:pub.10.1007/bf00938530
    8 sg:pub.10.1007/bf00939246
    9 sg:pub.10.1007/bf00940453
    10 sg:pub.10.1023/a:1022633924359
    11 sg:pub.10.1023/a:1022674516570
    12 sg:pub.10.1023/a:1022693600078
    13 schema:datePublished 1999-11
    14 schema:datePublishedReg 1999-11-01
    15 schema:description We consider a ship subject to kinematic, dynamic, and moment equations and steered via rudder under the assumptions that the rudder angle and rudder angle time rate are subject to upper and lower bounds. We formulate and solve four Mayer problems of optimal control, the optimization criterion being the minimum time.Problems P1 and P2 deal with course change maneuvers. In Problem P1, a ship initially in quasi-steady state must reach the final point with a given yaw angle and zero yaw angle time rate. Problem P2 differs from Problem P1 in that the additional requirement of quasi-steady state is imposed at the final point.Problems P3 and P4 deal with sidestep maneuvers. In Problem P3, a ship initially in quasi-steady state must reach the final point with a given lateral distance, zero yaw angle, and zero yaw angle time rate. Problem P4 differs from Problem P3 in that the additional requirement of quasi-steady state is imposed at the final point.The above Mayer problems are solved via the sequential gradient-restoration algorithm in conjunction with a new singularity avoiding transformation which accounts automatically for the bounds on rudder angle and rudder angle time rate.The optimal control histories involve multiple subarcs along which either the rudder angle is kept at one of the extreme positions or the rudder angle time rate is held at one of the extreme values. In problems where quasi-steady state is imposed at the final point, there is a higher number of subarcs than in problems where quasi-steady state is not imposed; the higher number of subarcs is due to the additional requirement that the lateral velocity and rudder angle vanish at the final point.
    16 schema:genre article
    17 schema:isAccessibleForFree false
    18 schema:isPartOf N1a3968924c73462fb158e6b4b30717cc
    19 Neddb3fc784034a12abbfd54d0cb7084e
    20 sg:journal.1044187
    21 schema:keywords Mayer problem
    22 P1
    23 P2
    24 P3
    25 P4
    26 Problem P1
    27 Problem P2
    28 Problems P3
    29 additional requirements
    30 algorithm
    31 angle
    32 assumption
    33 bounds
    34 change maneuver
    35 changes
    36 conjunction
    37 control
    38 control history
    39 course changes
    40 course-changing maneuvers
    41 criteria
    42 deal
    43 distance
    44 equations
    45 extreme positions
    46 extreme values
    47 final point
    48 gradient-restoration algorithm
    49 higher number
    50 history
    51 lateral distance
    52 lateral velocity
    53 lower bounds
    54 maneuvers
    55 minimum time
    56 moment equations
    57 multiple subarcs
    58 new singularities
    59 number
    60 optimal control
    61 optimal control history
    62 optimization criteria
    63 point
    64 position
    65 problem
    66 quasi-steady state
    67 rate
    68 requirements
    69 rudder
    70 rudder angle
    71 sequential gradient-restoration algorithm
    72 ship
    73 sidestep manoeuvre
    74 singularity
    75 state
    76 subarcs
    77 time
    78 time rate
    79 transformation
    80 values
    81 velocity
    82 yaw angle
    83 schema:name Optimal Control of a Ship for Course Change and Sidestep Maneuvers
    84 schema:pagination 259-282
    85 schema:productId N04cf951c2b63422f84d74203d3383360
    86 Neaa0ec10314145418f53100ad53a12ca
    87 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043428395
    88 https://doi.org/10.1023/a:1021796501467
    89 schema:sdDatePublished 2022-12-01T06:22
    90 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    91 schema:sdPublisher Nd6896c2d11494a5c89b8b54334af83c3
    92 schema:url https://doi.org/10.1023/a:1021796501467
    93 sgo:license sg:explorer/license/
    94 sgo:sdDataset articles
    95 rdf:type schema:ScholarlyArticle
    96 N04cf951c2b63422f84d74203d3383360 schema:name doi
    97 schema:value 10.1023/a:1021796501467
    98 rdf:type schema:PropertyValue
    99 N076dafeb7e7a4d33b5b961aa9cb52f71 rdf:first sg:person.07674216745.24
    100 rdf:rest N8dd92e5a01e94e9bade17ff5012ad59b
    101 N1a3968924c73462fb158e6b4b30717cc schema:issueNumber 2
    102 rdf:type schema:PublicationIssue
    103 N318de5314d49449dad06e23b1c52d49a rdf:first sg:person.015552732657.49
    104 rdf:rest N6eeebc35792f475aa445c8e5c59cc48d
    105 N6eeebc35792f475aa445c8e5c59cc48d rdf:first sg:person.014414570607.44
    106 rdf:rest N076dafeb7e7a4d33b5b961aa9cb52f71
    107 N8dd92e5a01e94e9bade17ff5012ad59b rdf:first sg:person.0750321724.09
    108 rdf:rest rdf:nil
    109 Nd6896c2d11494a5c89b8b54334af83c3 schema:name Springer Nature - SN SciGraph project
    110 rdf:type schema:Organization
    111 Neaa0ec10314145418f53100ad53a12ca schema:name dimensions_id
    112 schema:value pub.1043428395
    113 rdf:type schema:PropertyValue
    114 Neddb3fc784034a12abbfd54d0cb7084e schema:volumeNumber 103
    115 rdf:type schema:PublicationVolume
    116 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    117 schema:name Mathematical Sciences
    118 rdf:type schema:DefinedTerm
    119 anzsrc-for:0102 schema:inDefinedTermSet anzsrc-for:
    120 schema:name Applied Mathematics
    121 rdf:type schema:DefinedTerm
    122 sg:journal.1044187 schema:issn 0022-3239
    123 1573-2878
    124 schema:name Journal of Optimization Theory and Applications
    125 schema:publisher Springer Nature
    126 rdf:type schema:Periodical
    127 sg:person.014414570607.44 schema:affiliation grid-institutes:grid.21940.3e
    128 schema:familyName Wang
    129 schema:givenName T.
    130 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014414570607.44
    131 rdf:type schema:Person
    132 sg:person.015552732657.49 schema:affiliation grid-institutes:grid.21940.3e
    133 schema:familyName Miele
    134 schema:givenName A.
    135 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015552732657.49
    136 rdf:type schema:Person
    137 sg:person.0750321724.09 schema:affiliation grid-institutes:grid.21940.3e
    138 schema:familyName Dabney
    139 schema:givenName J. B.
    140 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0750321724.09
    141 rdf:type schema:Person
    142 sg:person.07674216745.24 schema:affiliation grid-institutes:grid.440380.b
    143 schema:familyName Chao
    144 schema:givenName C. S.
    145 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07674216745.24
    146 rdf:type schema:Person
    147 sg:pub.10.1007/bf00927913 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010952160
    148 https://doi.org/10.1007/bf00927913
    149 rdf:type schema:CreativeWork
    150 sg:pub.10.1007/bf00932781 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017158292
    151 https://doi.org/10.1007/bf00932781
    152 rdf:type schema:CreativeWork
    153 sg:pub.10.1007/bf00933463 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007322541
    154 https://doi.org/10.1007/bf00933463
    155 rdf:type schema:CreativeWork
    156 sg:pub.10.1007/bf00938530 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042215967
    157 https://doi.org/10.1007/bf00938530
    158 rdf:type schema:CreativeWork
    159 sg:pub.10.1007/bf00939246 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016081985
    160 https://doi.org/10.1007/bf00939246
    161 rdf:type schema:CreativeWork
    162 sg:pub.10.1007/bf00940453 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007878986
    163 https://doi.org/10.1007/bf00940453
    164 rdf:type schema:CreativeWork
    165 sg:pub.10.1023/a:1022633924359 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036016843
    166 https://doi.org/10.1023/a:1022633924359
    167 rdf:type schema:CreativeWork
    168 sg:pub.10.1023/a:1022674516570 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052925605
    169 https://doi.org/10.1023/a:1022674516570
    170 rdf:type schema:CreativeWork
    171 sg:pub.10.1023/a:1022693600078 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024125529
    172 https://doi.org/10.1023/a:1022693600078
    173 rdf:type schema:CreativeWork
    174 grid-institutes:grid.21940.3e schema:alternateName Aero-Astronautics Group, Rice University, Houston, Texas
    175 Aerospace Sciences, and Mathematical Sciences, Rice University, Houston, Texas
    176 Mechanical Engineering Department, Rice University, Houston, Texas
    177 schema:name Aero-Astronautics Group, Rice University, Houston, Texas
    178 Aerospace Sciences, and Mathematical Sciences, Rice University, Houston, Texas
    179 Mechanical Engineering Department, Rice University, Houston, Texas
    180 rdf:type schema:Organization
    181 grid-institutes:grid.440380.b schema:alternateName Chung Cheng Institute of Technology, Ta-Shi, Tao-Yuan, Taiwan, ROC
    182 schema:name Aero-Astronautics Group, Rice University, Houston, Texas;
    183 Chung Cheng Institute of Technology, Ta-Shi, Tao-Yuan, Taiwan, ROC
    184 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...