Optimal Control of a Ship for Collision Avoidance Maneuvers View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1999-12

AUTHORS

A. Miele, T. Wang, C. S. Chao, J. B. Dabney

ABSTRACT

We consider a ship subject to kinematic, dynamic, and moment equations and steered via rudder under the assumptions that the rudder angle and rudder angle time rate are subject to upper and lower bounds. We formulate and solve four Chebyshev problems of optimal control, the optimization criterion being the maximization with respect to the state and control history of the minimum value with respect to time of the distance between two identical ships, one maneuvering and one moving in a predetermined way.Problems P1 and P2 deal with collision avoidance maneuvers without cooperation, while Problems P3 and P4 deal with collision avoidance maneuvers with cooperation. In Problems P1 and P3, the maneuvering ship must reach the final point with a given lateral distance, zero yaw angle, and zero yaw angle time rate. In Problems P2 and P4, the additional requirement of quasi-steady state is imposed at the final point.The above Chebyshev problems, transformed into Bolza problems via suitable transformations, are solved via the sequential gradient-restoration algorithm in conjunction with a new singularity avoiding transformation which accounts automatically for the bounds on rudder angle and rudder angle time rate.The optimal control histories involve multiple subarcs along which either the rudder angle is kept at one of the extreme positions or the rudder angle time rate is held at one of the extreme values. In problems where quasi-steady state is imposed at the final point, there is a higher number of subarcs than in problems where quasi-steady state is not imposed; the higher number of subarcs is due to the additional requirement that the lateral velocity and rudder angle vanish at the final point. More... »

PAGES

495-519

References to SciGraph publications

  • 1970-04. Sequential gradient-restoration algorithm for optimal control problems in JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS
  • 1999-11. Optimal Control of a Ship for Course Change and Sidestep Maneuvers in JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS
  • 1981. Applications of Functional Analysis in Engineering in NONE
  • 1975-12. Recent advances in gradient algorithms for optimal control problems in JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS
  • 1997-04. Collision Avoidance by a Ship with a Moving Obstacle: Computation of Feasible Command Strategies in JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS
  • 1986-04. Optimal take-off trajectories in the presence of windshear in JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS
  • 1998-06. Optimal Ascent Trajectories and Feasibility of Next-Generation Orbital Spacecraft in JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS
  • 1998-05. Optimal Control of a Ship for a Course-Changing Maneuver in JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS
  • 1988-01. Time optimal control computation with application to ship steering in JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS
  • 1978-11. Sequential gradient-restoration algorithm for optimal control problems with general boundary conditions in JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS
  • 1993-06. On the control and guidance of the motion of an immersed body: Some problems in stochastic control in JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1023/a:1021775722287

    DOI

    http://dx.doi.org/10.1023/a:1021775722287

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1016603230


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Applied Mathematics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Aerospace Sciences, and Mathematical Sciences, Rice University, Houston, Texas", 
              "id": "http://www.grid.ac/institutes/grid.21940.3e", 
              "name": [
                "Aerospace Sciences, and Mathematical Sciences, Rice University, Houston, Texas"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Miele", 
            "givenName": "A.", 
            "id": "sg:person.015552732657.49", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015552732657.49"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Aero-Astronautics Group, Rice University, Houston, Texas", 
              "id": "http://www.grid.ac/institutes/grid.21940.3e", 
              "name": [
                "Aero-Astronautics Group, Rice University, Houston, Texas"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wang", 
            "givenName": "T.", 
            "id": "sg:person.014414570607.44", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014414570607.44"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Aero-Astronautics Group, Rice University, Houston, Texas; presently, Lecturer, Chung Cheng Institute of Technology, Ta-Shi, Tao-Yuan, Taiwan, ROC", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Aero-Astronautics Group, Rice University, Houston, Texas; presently, Lecturer, Chung Cheng Institute of Technology, Ta-Shi, Tao-Yuan, Taiwan, ROC"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Chao", 
            "givenName": "C. S.", 
            "id": "sg:person.07674216745.24", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07674216745.24"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Mechanical Engineering Department, Rice University, Houston, Texas", 
              "id": "http://www.grid.ac/institutes/grid.21940.3e", 
              "name": [
                "Mechanical Engineering Department, Rice University, Houston, Texas"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Dabney", 
            "givenName": "J. B.", 
            "id": "sg:person.0750321724.09", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0750321724.09"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf00927913", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010952160", 
              "https://doi.org/10.1007/bf00927913"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00940453", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007878986", 
              "https://doi.org/10.1007/bf00940453"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1022674516570", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052925605", 
              "https://doi.org/10.1023/a:1022674516570"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00938530", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042215967", 
              "https://doi.org/10.1007/bf00938530"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00933463", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007322541", 
              "https://doi.org/10.1007/bf00933463"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4684-3926-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034144515", 
              "https://doi.org/10.1007/978-1-4684-3926-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1022633924359", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036016843", 
              "https://doi.org/10.1023/a:1022633924359"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1021796501467", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043428395", 
              "https://doi.org/10.1023/a:1021796501467"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00939246", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016081985", 
              "https://doi.org/10.1007/bf00939246"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00932781", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017158292", 
              "https://doi.org/10.1007/bf00932781"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1022693600078", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024125529", 
              "https://doi.org/10.1023/a:1022693600078"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1999-12", 
        "datePublishedReg": "1999-12-01", 
        "description": "We consider a ship subject to kinematic, dynamic, and moment equations and steered via rudder under the assumptions that the rudder angle and rudder angle time rate are subject to upper and lower bounds. We formulate and solve four Chebyshev problems of optimal control, the optimization criterion being the maximization with respect to the state and control history of the minimum value with respect to time of the distance between two identical ships, one maneuvering and one moving in a predetermined way.Problems P1 and P2 deal with collision avoidance maneuvers without cooperation, while Problems P3 and P4 deal with collision avoidance maneuvers with cooperation. In Problems P1 and P3, the maneuvering ship must reach the final point with a given lateral distance, zero yaw angle, and zero yaw angle time rate. In Problems P2 and P4, the additional requirement of quasi-steady state is imposed at the final point.The above Chebyshev problems, transformed into Bolza problems via suitable transformations, are solved via the sequential gradient-restoration algorithm in conjunction with a new singularity avoiding transformation which accounts automatically for the bounds on rudder angle and rudder angle time rate.The optimal control histories involve multiple subarcs along which either the rudder angle is kept at one of the extreme positions or the rudder angle time rate is held at one of the extreme values. In problems where quasi-steady state is imposed at the final point, there is a higher number of subarcs than in problems where quasi-steady state is not imposed; the higher number of subarcs is due to the additional requirement that the lateral velocity and rudder angle vanish at the final point.", 
        "genre": "article", 
        "id": "sg:pub.10.1023/a:1021775722287", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1044187", 
            "issn": [
              "0022-3239", 
              "1573-2878"
            ], 
            "name": "Journal of Optimization Theory and Applications", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "3", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "103"
          }
        ], 
        "keywords": [
          "optimal control", 
          "rudder angle", 
          "Chebyshev problem", 
          "Problem P1", 
          "optimal control history", 
          "quasi-steady state", 
          "collision avoidance maneuver", 
          "sequential gradient-restoration algorithm", 
          "control history", 
          "gradient-restoration algorithm", 
          "multiple subarcs", 
          "time rate", 
          "Bolza problem", 
          "final point", 
          "moment equations", 
          "maneuvering ship", 
          "suitable transformation", 
          "Problem P2", 
          "Problems P3", 
          "new singularities", 
          "optimization criteria", 
          "avoidance maneuvers", 
          "lower bounds", 
          "subarcs", 
          "bounds", 
          "additional requirements", 
          "lateral velocity", 
          "extreme values", 
          "identical ships", 
          "yaw angle", 
          "problem", 
          "equations", 
          "singularity", 
          "ship", 
          "minimum value", 
          "predetermined way", 
          "point", 
          "angle", 
          "maximization", 
          "rudder", 
          "algorithm", 
          "velocity", 
          "state", 
          "assumption", 
          "transformation", 
          "distance", 
          "maneuvering", 
          "number", 
          "respect", 
          "maneuvers", 
          "lateral distance", 
          "extreme positions", 
          "control", 
          "values", 
          "requirements", 
          "conjunction", 
          "criteria", 
          "position", 
          "deal", 
          "way", 
          "time", 
          "rate", 
          "higher number", 
          "P2", 
          "P1", 
          "P3", 
          "cooperation", 
          "P4", 
          "history"
        ], 
        "name": "Optimal Control of a Ship for Collision Avoidance Maneuvers", 
        "pagination": "495-519", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1016603230"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1023/a:1021775722287"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1023/a:1021775722287", 
          "https://app.dimensions.ai/details/publication/pub.1016603230"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-12-01T06:22", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_334.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1023/a:1021775722287"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1023/a:1021775722287'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1023/a:1021775722287'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1023/a:1021775722287'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1023/a:1021775722287'


     

    This table displays all metadata directly associated to this object as RDF triples.

    198 TRIPLES      21 PREDICATES      105 URIs      86 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1023/a:1021775722287 schema:about anzsrc-for:01
    2 anzsrc-for:0102
    3 schema:author N6718ae4d43f14426831f8a452e09f71b
    4 schema:citation sg:pub.10.1007/978-1-4684-3926-7
    5 sg:pub.10.1007/bf00927913
    6 sg:pub.10.1007/bf00932781
    7 sg:pub.10.1007/bf00933463
    8 sg:pub.10.1007/bf00938530
    9 sg:pub.10.1007/bf00939246
    10 sg:pub.10.1007/bf00940453
    11 sg:pub.10.1023/a:1021796501467
    12 sg:pub.10.1023/a:1022633924359
    13 sg:pub.10.1023/a:1022674516570
    14 sg:pub.10.1023/a:1022693600078
    15 schema:datePublished 1999-12
    16 schema:datePublishedReg 1999-12-01
    17 schema:description We consider a ship subject to kinematic, dynamic, and moment equations and steered via rudder under the assumptions that the rudder angle and rudder angle time rate are subject to upper and lower bounds. We formulate and solve four Chebyshev problems of optimal control, the optimization criterion being the maximization with respect to the state and control history of the minimum value with respect to time of the distance between two identical ships, one maneuvering and one moving in a predetermined way.Problems P1 and P2 deal with collision avoidance maneuvers without cooperation, while Problems P3 and P4 deal with collision avoidance maneuvers with cooperation. In Problems P1 and P3, the maneuvering ship must reach the final point with a given lateral distance, zero yaw angle, and zero yaw angle time rate. In Problems P2 and P4, the additional requirement of quasi-steady state is imposed at the final point.The above Chebyshev problems, transformed into Bolza problems via suitable transformations, are solved via the sequential gradient-restoration algorithm in conjunction with a new singularity avoiding transformation which accounts automatically for the bounds on rudder angle and rudder angle time rate.The optimal control histories involve multiple subarcs along which either the rudder angle is kept at one of the extreme positions or the rudder angle time rate is held at one of the extreme values. In problems where quasi-steady state is imposed at the final point, there is a higher number of subarcs than in problems where quasi-steady state is not imposed; the higher number of subarcs is due to the additional requirement that the lateral velocity and rudder angle vanish at the final point.
    18 schema:genre article
    19 schema:isAccessibleForFree false
    20 schema:isPartOf Na76fa0228b4c44c582b088b89da5af07
    21 Nc4697aec4dc548db8fbcc1a242ae90df
    22 sg:journal.1044187
    23 schema:keywords Bolza problem
    24 Chebyshev problem
    25 P1
    26 P2
    27 P3
    28 P4
    29 Problem P1
    30 Problem P2
    31 Problems P3
    32 additional requirements
    33 algorithm
    34 angle
    35 assumption
    36 avoidance maneuvers
    37 bounds
    38 collision avoidance maneuver
    39 conjunction
    40 control
    41 control history
    42 cooperation
    43 criteria
    44 deal
    45 distance
    46 equations
    47 extreme positions
    48 extreme values
    49 final point
    50 gradient-restoration algorithm
    51 higher number
    52 history
    53 identical ships
    54 lateral distance
    55 lateral velocity
    56 lower bounds
    57 maneuvering
    58 maneuvering ship
    59 maneuvers
    60 maximization
    61 minimum value
    62 moment equations
    63 multiple subarcs
    64 new singularities
    65 number
    66 optimal control
    67 optimal control history
    68 optimization criteria
    69 point
    70 position
    71 predetermined way
    72 problem
    73 quasi-steady state
    74 rate
    75 requirements
    76 respect
    77 rudder
    78 rudder angle
    79 sequential gradient-restoration algorithm
    80 ship
    81 singularity
    82 state
    83 subarcs
    84 suitable transformation
    85 time
    86 time rate
    87 transformation
    88 values
    89 velocity
    90 way
    91 yaw angle
    92 schema:name Optimal Control of a Ship for Collision Avoidance Maneuvers
    93 schema:pagination 495-519
    94 schema:productId N71e3f0010ac84f36b243b4b83ed91de2
    95 Neeedd4b6315a4227a63eb4fc2796f540
    96 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016603230
    97 https://doi.org/10.1023/a:1021775722287
    98 schema:sdDatePublished 2022-12-01T06:22
    99 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    100 schema:sdPublisher N73f445db950d4673878adbadf7495fa1
    101 schema:url https://doi.org/10.1023/a:1021775722287
    102 sgo:license sg:explorer/license/
    103 sgo:sdDataset articles
    104 rdf:type schema:ScholarlyArticle
    105 N6718ae4d43f14426831f8a452e09f71b rdf:first sg:person.015552732657.49
    106 rdf:rest Nb80549d1358443b78ea1befdcf1e486e
    107 N71e3f0010ac84f36b243b4b83ed91de2 schema:name doi
    108 schema:value 10.1023/a:1021775722287
    109 rdf:type schema:PropertyValue
    110 N73f445db950d4673878adbadf7495fa1 schema:name Springer Nature - SN SciGraph project
    111 rdf:type schema:Organization
    112 N8721e61b6f7443a0ae2a85ea427aaad4 rdf:first sg:person.0750321724.09
    113 rdf:rest rdf:nil
    114 N93bfbc25df8849869d442ecf497b0599 rdf:first sg:person.07674216745.24
    115 rdf:rest N8721e61b6f7443a0ae2a85ea427aaad4
    116 Na76fa0228b4c44c582b088b89da5af07 schema:volumeNumber 103
    117 rdf:type schema:PublicationVolume
    118 Nb80549d1358443b78ea1befdcf1e486e rdf:first sg:person.014414570607.44
    119 rdf:rest N93bfbc25df8849869d442ecf497b0599
    120 Nc4697aec4dc548db8fbcc1a242ae90df schema:issueNumber 3
    121 rdf:type schema:PublicationIssue
    122 Neeedd4b6315a4227a63eb4fc2796f540 schema:name dimensions_id
    123 schema:value pub.1016603230
    124 rdf:type schema:PropertyValue
    125 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    126 schema:name Mathematical Sciences
    127 rdf:type schema:DefinedTerm
    128 anzsrc-for:0102 schema:inDefinedTermSet anzsrc-for:
    129 schema:name Applied Mathematics
    130 rdf:type schema:DefinedTerm
    131 sg:journal.1044187 schema:issn 0022-3239
    132 1573-2878
    133 schema:name Journal of Optimization Theory and Applications
    134 schema:publisher Springer Nature
    135 rdf:type schema:Periodical
    136 sg:person.014414570607.44 schema:affiliation grid-institutes:grid.21940.3e
    137 schema:familyName Wang
    138 schema:givenName T.
    139 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014414570607.44
    140 rdf:type schema:Person
    141 sg:person.015552732657.49 schema:affiliation grid-institutes:grid.21940.3e
    142 schema:familyName Miele
    143 schema:givenName A.
    144 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015552732657.49
    145 rdf:type schema:Person
    146 sg:person.0750321724.09 schema:affiliation grid-institutes:grid.21940.3e
    147 schema:familyName Dabney
    148 schema:givenName J. B.
    149 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0750321724.09
    150 rdf:type schema:Person
    151 sg:person.07674216745.24 schema:affiliation grid-institutes:None
    152 schema:familyName Chao
    153 schema:givenName C. S.
    154 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07674216745.24
    155 rdf:type schema:Person
    156 sg:pub.10.1007/978-1-4684-3926-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034144515
    157 https://doi.org/10.1007/978-1-4684-3926-7
    158 rdf:type schema:CreativeWork
    159 sg:pub.10.1007/bf00927913 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010952160
    160 https://doi.org/10.1007/bf00927913
    161 rdf:type schema:CreativeWork
    162 sg:pub.10.1007/bf00932781 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017158292
    163 https://doi.org/10.1007/bf00932781
    164 rdf:type schema:CreativeWork
    165 sg:pub.10.1007/bf00933463 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007322541
    166 https://doi.org/10.1007/bf00933463
    167 rdf:type schema:CreativeWork
    168 sg:pub.10.1007/bf00938530 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042215967
    169 https://doi.org/10.1007/bf00938530
    170 rdf:type schema:CreativeWork
    171 sg:pub.10.1007/bf00939246 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016081985
    172 https://doi.org/10.1007/bf00939246
    173 rdf:type schema:CreativeWork
    174 sg:pub.10.1007/bf00940453 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007878986
    175 https://doi.org/10.1007/bf00940453
    176 rdf:type schema:CreativeWork
    177 sg:pub.10.1023/a:1021796501467 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043428395
    178 https://doi.org/10.1023/a:1021796501467
    179 rdf:type schema:CreativeWork
    180 sg:pub.10.1023/a:1022633924359 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036016843
    181 https://doi.org/10.1023/a:1022633924359
    182 rdf:type schema:CreativeWork
    183 sg:pub.10.1023/a:1022674516570 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052925605
    184 https://doi.org/10.1023/a:1022674516570
    185 rdf:type schema:CreativeWork
    186 sg:pub.10.1023/a:1022693600078 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024125529
    187 https://doi.org/10.1023/a:1022693600078
    188 rdf:type schema:CreativeWork
    189 grid-institutes:None schema:alternateName Aero-Astronautics Group, Rice University, Houston, Texas; presently, Lecturer, Chung Cheng Institute of Technology, Ta-Shi, Tao-Yuan, Taiwan, ROC
    190 schema:name Aero-Astronautics Group, Rice University, Houston, Texas; presently, Lecturer, Chung Cheng Institute of Technology, Ta-Shi, Tao-Yuan, Taiwan, ROC
    191 rdf:type schema:Organization
    192 grid-institutes:grid.21940.3e schema:alternateName Aero-Astronautics Group, Rice University, Houston, Texas
    193 Aerospace Sciences, and Mathematical Sciences, Rice University, Houston, Texas
    194 Mechanical Engineering Department, Rice University, Houston, Texas
    195 schema:name Aero-Astronautics Group, Rice University, Houston, Texas
    196 Aerospace Sciences, and Mathematical Sciences, Rice University, Houston, Texas
    197 Mechanical Engineering Department, Rice University, Houston, Texas
    198 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...