Ontology type: schema:ScholarlyArticle
2003-01
AUTHORSDennis D. McCarthy, Brian J. Luzum
ABSTRACTPrecise astrometric observations show that significant systematic differences of the order of 10 milliarcseconds (mas) exist between the observed position of the celestial pole in the International Celestial Reference Frame (ICRF) and the position determined using the International Astronomical Union (IAU) 1976 Precession (Lieske et al., 1977) and the IAU 1980 Nutation Theory (Seidelmann, 1982). The International Earth Rotation Service routinely publishes these 'celestial pole offsets', and the IERS Conventions (McCarthy, 1996) recommends a procedure to account for these errors. The IAU, at its General Assembly in 2000, adopted a new precession/nutation model (Mathews et al., 2002). This model, designated IAU2000A, which includes nearly 1400 terms, provides the direction of the celestial pole in the ICRF with an accuracy of ±0.1 mas. Users requiring accuracy no better than 1 mas, however, may not require the full model, particularly if computational time or storage are issues. Consequently, the IAU also adopted an abridged procedure designated IAU2000B to model the celestial pole motion with an accuracy that does not result in a difference greater than 1 mas with respect to that of the IAU2000A model. That IAU2000B model, presented here, is shown to have the required accuracy for a period of more than 50 years from 1995 to 2050. More... »
PAGES37-49
http://scigraph.springernature.com/pub.10.1023/a:1021762727016
DOIhttp://dx.doi.org/10.1023/a:1021762727016
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1003674821
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Mathematical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Applied Mathematics",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "U.S. Naval Observatory, 3450 Massachusetts Avenue, NW, 20392-5420, Washington, DC, U.S.A",
"id": "http://www.grid.ac/institutes/grid.440354.2",
"name": [
"U.S. Naval Observatory, 3450 Massachusetts Avenue, NW, 20392-5420, Washington, DC, U.S.A"
],
"type": "Organization"
},
"familyName": "McCarthy",
"givenName": "Dennis D.",
"id": "sg:person.013045417717.11",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013045417717.11"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "U.S. Naval Observatory, 3450 Massachusetts Avenue, NW, 20392-5420, Washington, DC, U.S.A",
"id": "http://www.grid.ac/institutes/grid.440354.2",
"name": [
"U.S. Naval Observatory, 3450 Massachusetts Avenue, NW, 20392-5420, Washington, DC, U.S.A"
],
"type": "Organization"
},
"familyName": "Luzum",
"givenName": "Brian J.",
"id": "sg:person.013425367265.29",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013425367265.29"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1023/a:1008364926215",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1040498825",
"https://doi.org/10.1023/a:1008364926215"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf01228952",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1012049042",
"https://doi.org/10.1007/bf01228952"
],
"type": "CreativeWork"
}
],
"datePublished": "2003-01",
"datePublishedReg": "2003-01-01",
"description": "Precise astrometric observations show that significant systematic differences of the order of 10 milliarcseconds (mas) exist between the observed position of the celestial pole in the International Celestial Reference Frame (ICRF) and the position determined using the International Astronomical Union (IAU) 1976 Precession (Lieske et al., 1977) and the IAU 1980 Nutation Theory (Seidelmann, 1982). The International Earth Rotation Service routinely publishes these 'celestial pole offsets', and the IERS Conventions (McCarthy, 1996) recommends a procedure to account for these errors. The IAU, at its General Assembly in 2000, adopted a new precession/nutation model (Mathews et al., 2002). This model, designated IAU2000A, which includes nearly 1400 terms, provides the direction of the celestial pole in the ICRF with an accuracy of \u00b10.1 mas. Users requiring accuracy no better than 1 mas, however, may not require the full model, particularly if computational time or storage are issues. Consequently, the IAU also adopted an abridged procedure designated IAU2000B to model the celestial pole motion with an accuracy that does not result in a difference greater than 1 mas with respect to that of the IAU2000A model. That IAU2000B model, presented here, is shown to have the required accuracy for a period of more than 50 years from 1995 to 2050.",
"genre": "article",
"id": "sg:pub.10.1023/a:1021762727016",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1136436",
"issn": [
"0923-2958",
"1572-9478"
],
"name": "Celestial Mechanics and Dynamical Astronomy",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "1",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "85"
}
],
"keywords": [
"International Celestial Reference Frame",
"celestial pole",
"Celestial Reference Frame",
"celestial pole offsets",
"International Earth Rotation Service",
"computational time",
"nutation theory",
"IERS Conventions",
"pole motion",
"astrometric observations",
"nutation model",
"reference frame",
"full model",
"observed positions",
"accuracy",
"IAU",
"model",
"milliarcseconds",
"poles",
"precession",
"motion",
"theory",
"significant systematic differences",
"error",
"terms",
"procedure",
"position",
"direction",
"systematic differences",
"order",
"respect",
"offset",
"frame",
"observations",
"time",
"users",
"issues",
"Ma",
"storage",
"differences",
"assembly",
"General Assembly",
"services",
"period",
"years",
"Convention"
],
"name": "An Abridged Model of the Precession\u2013Nutation of the Celestial Pole",
"pagination": "37-49",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1003674821"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1023/a:1021762727016"
]
}
],
"sameAs": [
"https://doi.org/10.1023/a:1021762727016",
"https://app.dimensions.ai/details/publication/pub.1003674821"
],
"sdDataset": "articles",
"sdDatePublished": "2022-05-20T07:22",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_364.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1023/a:1021762727016"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1023/a:1021762727016'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1023/a:1021762727016'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1023/a:1021762727016'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1023/a:1021762727016'
This table displays all metadata directly associated to this object as RDF triples.
119 TRIPLES
22 PREDICATES
74 URIs
64 LITERALS
6 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1023/a:1021762727016 | schema:about | anzsrc-for:01 |
2 | ″ | ″ | anzsrc-for:0102 |
3 | ″ | schema:author | N1301822b559e43ac9a73fa7df7d09202 |
4 | ″ | schema:citation | sg:pub.10.1007/bf01228952 |
5 | ″ | ″ | sg:pub.10.1023/a:1008364926215 |
6 | ″ | schema:datePublished | 2003-01 |
7 | ″ | schema:datePublishedReg | 2003-01-01 |
8 | ″ | schema:description | Precise astrometric observations show that significant systematic differences of the order of 10 milliarcseconds (mas) exist between the observed position of the celestial pole in the International Celestial Reference Frame (ICRF) and the position determined using the International Astronomical Union (IAU) 1976 Precession (Lieske et al., 1977) and the IAU 1980 Nutation Theory (Seidelmann, 1982). The International Earth Rotation Service routinely publishes these 'celestial pole offsets', and the IERS Conventions (McCarthy, 1996) recommends a procedure to account for these errors. The IAU, at its General Assembly in 2000, adopted a new precession/nutation model (Mathews et al., 2002). This model, designated IAU2000A, which includes nearly 1400 terms, provides the direction of the celestial pole in the ICRF with an accuracy of ±0.1 mas. Users requiring accuracy no better than 1 mas, however, may not require the full model, particularly if computational time or storage are issues. Consequently, the IAU also adopted an abridged procedure designated IAU2000B to model the celestial pole motion with an accuracy that does not result in a difference greater than 1 mas with respect to that of the IAU2000A model. That IAU2000B model, presented here, is shown to have the required accuracy for a period of more than 50 years from 1995 to 2050. |
9 | ″ | schema:genre | article |
10 | ″ | schema:inLanguage | en |
11 | ″ | schema:isAccessibleForFree | false |
12 | ″ | schema:isPartOf | N0a7cfef680db4cb38a56f260f8be2fd4 |
13 | ″ | ″ | Nc50d0e69dd064388b6ed49d31e27e948 |
14 | ″ | ″ | sg:journal.1136436 |
15 | ″ | schema:keywords | Celestial Reference Frame |
16 | ″ | ″ | Convention |
17 | ″ | ″ | General Assembly |
18 | ″ | ″ | IAU |
19 | ″ | ″ | IERS Conventions |
20 | ″ | ″ | International Celestial Reference Frame |
21 | ″ | ″ | International Earth Rotation Service |
22 | ″ | ″ | Ma |
23 | ″ | ″ | accuracy |
24 | ″ | ″ | assembly |
25 | ″ | ″ | astrometric observations |
26 | ″ | ″ | celestial pole |
27 | ″ | ″ | celestial pole offsets |
28 | ″ | ″ | computational time |
29 | ″ | ″ | differences |
30 | ″ | ″ | direction |
31 | ″ | ″ | error |
32 | ″ | ″ | frame |
33 | ″ | ″ | full model |
34 | ″ | ″ | issues |
35 | ″ | ″ | milliarcseconds |
36 | ″ | ″ | model |
37 | ″ | ″ | motion |
38 | ″ | ″ | nutation model |
39 | ″ | ″ | nutation theory |
40 | ″ | ″ | observations |
41 | ″ | ″ | observed positions |
42 | ″ | ″ | offset |
43 | ″ | ″ | order |
44 | ″ | ″ | period |
45 | ″ | ″ | pole motion |
46 | ″ | ″ | poles |
47 | ″ | ″ | position |
48 | ″ | ″ | precession |
49 | ″ | ″ | procedure |
50 | ″ | ″ | reference frame |
51 | ″ | ″ | respect |
52 | ″ | ″ | services |
53 | ″ | ″ | significant systematic differences |
54 | ″ | ″ | storage |
55 | ″ | ″ | systematic differences |
56 | ″ | ″ | terms |
57 | ″ | ″ | theory |
58 | ″ | ″ | time |
59 | ″ | ″ | users |
60 | ″ | ″ | years |
61 | ″ | schema:name | An Abridged Model of the Precession–Nutation of the Celestial Pole |
62 | ″ | schema:pagination | 37-49 |
63 | ″ | schema:productId | N6afc8353a3964f229db510f88f20eabe |
64 | ″ | ″ | N6ec0451ab010452bba87333b2119ccf3 |
65 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1003674821 |
66 | ″ | ″ | https://doi.org/10.1023/a:1021762727016 |
67 | ″ | schema:sdDatePublished | 2022-05-20T07:22 |
68 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
69 | ″ | schema:sdPublisher | N8630ebe8b8b247fb9dfcf3af3088fa10 |
70 | ″ | schema:url | https://doi.org/10.1023/a:1021762727016 |
71 | ″ | sgo:license | sg:explorer/license/ |
72 | ″ | sgo:sdDataset | articles |
73 | ″ | rdf:type | schema:ScholarlyArticle |
74 | N0a7cfef680db4cb38a56f260f8be2fd4 | schema:issueNumber | 1 |
75 | ″ | rdf:type | schema:PublicationIssue |
76 | N1301822b559e43ac9a73fa7df7d09202 | rdf:first | sg:person.013045417717.11 |
77 | ″ | rdf:rest | Nb18c52b7284143c382b5679a67c11c75 |
78 | N6afc8353a3964f229db510f88f20eabe | schema:name | doi |
79 | ″ | schema:value | 10.1023/a:1021762727016 |
80 | ″ | rdf:type | schema:PropertyValue |
81 | N6ec0451ab010452bba87333b2119ccf3 | schema:name | dimensions_id |
82 | ″ | schema:value | pub.1003674821 |
83 | ″ | rdf:type | schema:PropertyValue |
84 | N8630ebe8b8b247fb9dfcf3af3088fa10 | schema:name | Springer Nature - SN SciGraph project |
85 | ″ | rdf:type | schema:Organization |
86 | Nb18c52b7284143c382b5679a67c11c75 | rdf:first | sg:person.013425367265.29 |
87 | ″ | rdf:rest | rdf:nil |
88 | Nc50d0e69dd064388b6ed49d31e27e948 | schema:volumeNumber | 85 |
89 | ″ | rdf:type | schema:PublicationVolume |
90 | anzsrc-for:01 | schema:inDefinedTermSet | anzsrc-for: |
91 | ″ | schema:name | Mathematical Sciences |
92 | ″ | rdf:type | schema:DefinedTerm |
93 | anzsrc-for:0102 | schema:inDefinedTermSet | anzsrc-for: |
94 | ″ | schema:name | Applied Mathematics |
95 | ″ | rdf:type | schema:DefinedTerm |
96 | sg:journal.1136436 | schema:issn | 0923-2958 |
97 | ″ | ″ | 1572-9478 |
98 | ″ | schema:name | Celestial Mechanics and Dynamical Astronomy |
99 | ″ | schema:publisher | Springer Nature |
100 | ″ | rdf:type | schema:Periodical |
101 | sg:person.013045417717.11 | schema:affiliation | grid-institutes:grid.440354.2 |
102 | ″ | schema:familyName | McCarthy |
103 | ″ | schema:givenName | Dennis D. |
104 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013045417717.11 |
105 | ″ | rdf:type | schema:Person |
106 | sg:person.013425367265.29 | schema:affiliation | grid-institutes:grid.440354.2 |
107 | ″ | schema:familyName | Luzum |
108 | ″ | schema:givenName | Brian J. |
109 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013425367265.29 |
110 | ″ | rdf:type | schema:Person |
111 | sg:pub.10.1007/bf01228952 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1012049042 |
112 | ″ | ″ | https://doi.org/10.1007/bf01228952 |
113 | ″ | rdf:type | schema:CreativeWork |
114 | sg:pub.10.1023/a:1008364926215 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1040498825 |
115 | ″ | ″ | https://doi.org/10.1023/a:1008364926215 |
116 | ″ | rdf:type | schema:CreativeWork |
117 | grid-institutes:grid.440354.2 | schema:alternateName | U.S. Naval Observatory, 3450 Massachusetts Avenue, NW, 20392-5420, Washington, DC, U.S.A |
118 | ″ | schema:name | U.S. Naval Observatory, 3450 Massachusetts Avenue, NW, 20392-5420, Washington, DC, U.S.A |
119 | ″ | rdf:type | schema:Organization |