Comet Splitting – Observations and Model Scenarios View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2000-10

AUTHORS

Hermann Boehnhardt

ABSTRACT

Splitting events affect cometary nuclei to a different level of severity ranging from complete disruption of the nucleus (e.g., C/1999 S4 LINEAR) to separation of major fragments (e.g., 73P/Schwassmann-Wachmann 3) and spill-offs of smaller boulders (e.g., C/2001 A2 LINEAR).Fragmentation of comets produces secondary products over a wide range of sizes (from cometesimals to sub-micron dust). It is detectable through the presence of fragments (with own comae and tails) in the coma of the parent nucleus, through outbursts in its activity and through arc-lets (“coma wings”)associated with fragments. The secondaries have different life times and show different non-gravitational forces. Nucleus splitting is also considered to generate whole families of comets (Kreutz group) or — if gravitational bound — multiple nuclei (e.g., C/1995 O1 Hale-Bopp). It may explain the striae phenomena seen in dust tails of bright comets (C/1995 O1 Hale-Bopp) and the detection of chains of impact craters onother bodies in the solar system. As process of significant mass loss it is relevant for the scenario of nucleus extinction, at the same time it also plays a role for the number statistics of existing (observable) comets and for the size distribution of comet nuclei. Various model scenarios for nucleus splitting are proposed: tidal disruption, rotational splitting, break-up due to internal gas pressure, fragmentation due to collision with other bodies. Only in one case, Comet D/1993 F1Shoemaker-Levy 9, the physical process of fragmentation could be undoubtedly identified. In any case, comet splitting provides important insights inthe internal structure, surface layering and chemistry of comet nuclei. More... »

PAGES

91-115

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1023/a:1021538201389

DOI

http://dx.doi.org/10.1023/a:1021538201389

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1001456013


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Earth Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0201", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Astronomical and Space Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0403", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Geology", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "European Southern Observatory ESO, Alonso de Cordova 3107, Santiago de, Chile", 
          "id": "http://www.grid.ac/institutes/grid.440369.c", 
          "name": [
            "European Southern Observatory ESO, Alonso de Cordova 3107, Santiago de, Chile"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Boehnhardt", 
        "givenName": "Hermann", 
        "id": "sg:person.01010204607.24", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01010204607.24"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf00896489", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047140061", 
          "https://doi.org/10.1007/bf00896489"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1005925214405", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043963078", 
          "https://doi.org/10.1023/a:1005925214405"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1006230712665", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007610858", 
          "https://doi.org/10.1023/a:1006230712665"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00117190", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024583871", 
          "https://doi.org/10.1007/bf00117190"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2000-10", 
    "datePublishedReg": "2000-10-01", 
    "description": "Splitting events affect cometary nuclei to a different level of severity ranging from complete disruption of the nucleus (e.g., C/1999 S4 LINEAR) to separation of major fragments (e.g., 73P/Schwassmann-Wachmann 3) and spill-offs of smaller boulders (e.g., C/2001 A2 LINEAR).Fragmentation of comets produces secondary products over a wide range of sizes (from cometesimals to sub-micron dust). It is detectable through the presence of fragments (with own comae and tails) in the coma of the parent nucleus, through outbursts in its activity and through arc-lets (\u201ccoma wings\u201d)associated with fragments. The secondaries have different life times and show different non-gravitational forces. Nucleus splitting is also considered to generate whole families of comets (Kreutz group) or \u2014 if gravitational bound \u2014 multiple nuclei (e.g., C/1995 O1 Hale-Bopp). It may explain the striae phenomena seen in dust tails of bright comets (C/1995 O1 Hale-Bopp) and the detection of chains of impact craters onother bodies in the solar system. As process of significant mass loss it is relevant for the scenario of nucleus extinction, at the same time it also plays a role for the number statistics of existing (observable) comets and for the size distribution of comet nuclei. Various model scenarios for nucleus splitting are proposed: tidal disruption, rotational splitting, break-up due to internal gas pressure, fragmentation due to collision with other bodies. Only in one case, Comet D/1993 F1Shoemaker-Levy 9, the physical process of fragmentation could be undoubtedly identified. In any case, comet splitting provides important insights inthe internal structure, surface layering and chemistry of comet nuclei.", 
    "genre": "article", 
    "id": "sg:pub.10.1023/a:1021538201389", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1026186", 
        "issn": [
          "0167-9295", 
          "1573-0794"
        ], 
        "name": "Earth, Moon, and Planets", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1-4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "89"
      }
    ], 
    "keywords": [
      "comet nucleus", 
      "non-gravitational forces", 
      "tidal disruption", 
      "number statistics", 
      "rotational splitting", 
      "parent nucleus", 
      "solar system", 
      "cometary nuclei", 
      "dust tail", 
      "gas pressure", 
      "different life times", 
      "bright comets", 
      "splitting", 
      "physical processes", 
      "significant mass loss", 
      "comets", 
      "nucleus", 
      "surface layering", 
      "internal structure", 
      "life time", 
      "mass loss", 
      "collisions", 
      "comet splitting", 
      "splitting events", 
      "outburst", 
      "model scenarios", 
      "internal gas pressure", 
      "nucleus splitting", 
      "size distribution", 
      "fragmentation", 
      "wide range", 
      "coma", 
      "tail", 
      "craters", 
      "phenomenon", 
      "impact craters", 
      "range", 
      "extinction", 
      "structure", 
      "major fragments", 
      "Secondary", 
      "distribution", 
      "splitting observations", 
      "complete disruption", 
      "scenarios", 
      "separation", 
      "force", 
      "chemistry", 
      "time", 
      "detection", 
      "process", 
      "fragments", 
      "secondary products", 
      "same time", 
      "whole family", 
      "system", 
      "pressure", 
      "important insights", 
      "size", 
      "small boulders", 
      "statistics", 
      "cases", 
      "presence", 
      "chain", 
      "boulders", 
      "loss", 
      "layering", 
      "insights", 
      "presence of fragments", 
      "events", 
      "body", 
      "levels", 
      "different levels", 
      "disruption", 
      "products", 
      "role", 
      "family", 
      "activity", 
      "severity", 
      "detection of chains"
    ], 
    "name": "Comet Splitting \u2013 Observations and Model Scenarios", 
    "pagination": "91-115", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1001456013"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1023/a:1021538201389"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1023/a:1021538201389", 
      "https://app.dimensions.ai/details/publication/pub.1001456013"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-11-24T20:48", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221124/entities/gbq_results/article/article_309.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1023/a:1021538201389"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1023/a:1021538201389'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1023/a:1021538201389'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1023/a:1021538201389'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1023/a:1021538201389'


 

This table displays all metadata directly associated to this object as RDF triples.

161 TRIPLES      21 PREDICATES      111 URIs      97 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1023/a:1021538201389 schema:about anzsrc-for:02
2 anzsrc-for:0201
3 anzsrc-for:04
4 anzsrc-for:0403
5 schema:author N0802e10194704e40941048ed8c3c8a9f
6 schema:citation sg:pub.10.1007/bf00117190
7 sg:pub.10.1007/bf00896489
8 sg:pub.10.1023/a:1005925214405
9 sg:pub.10.1023/a:1006230712665
10 schema:datePublished 2000-10
11 schema:datePublishedReg 2000-10-01
12 schema:description Splitting events affect cometary nuclei to a different level of severity ranging from complete disruption of the nucleus (e.g., C/1999 S4 LINEAR) to separation of major fragments (e.g., 73P/Schwassmann-Wachmann 3) and spill-offs of smaller boulders (e.g., C/2001 A2 LINEAR).Fragmentation of comets produces secondary products over a wide range of sizes (from cometesimals to sub-micron dust). It is detectable through the presence of fragments (with own comae and tails) in the coma of the parent nucleus, through outbursts in its activity and through arc-lets (“coma wings”)associated with fragments. The secondaries have different life times and show different non-gravitational forces. Nucleus splitting is also considered to generate whole families of comets (Kreutz group) or — if gravitational bound — multiple nuclei (e.g., C/1995 O1 Hale-Bopp). It may explain the striae phenomena seen in dust tails of bright comets (C/1995 O1 Hale-Bopp) and the detection of chains of impact craters onother bodies in the solar system. As process of significant mass loss it is relevant for the scenario of nucleus extinction, at the same time it also plays a role for the number statistics of existing (observable) comets and for the size distribution of comet nuclei. Various model scenarios for nucleus splitting are proposed: tidal disruption, rotational splitting, break-up due to internal gas pressure, fragmentation due to collision with other bodies. Only in one case, Comet D/1993 F1Shoemaker-Levy 9, the physical process of fragmentation could be undoubtedly identified. In any case, comet splitting provides important insights inthe internal structure, surface layering and chemistry of comet nuclei.
13 schema:genre article
14 schema:isAccessibleForFree false
15 schema:isPartOf N8bb8f24086224d23aff21cac7359bbb6
16 N9f0000574c614c62b0a2ccdd1ed6a3e7
17 sg:journal.1026186
18 schema:keywords Secondary
19 activity
20 body
21 boulders
22 bright comets
23 cases
24 chain
25 chemistry
26 collisions
27 coma
28 comet nucleus
29 comet splitting
30 cometary nuclei
31 comets
32 complete disruption
33 craters
34 detection
35 detection of chains
36 different levels
37 different life times
38 disruption
39 distribution
40 dust tail
41 events
42 extinction
43 family
44 force
45 fragmentation
46 fragments
47 gas pressure
48 impact craters
49 important insights
50 insights
51 internal gas pressure
52 internal structure
53 layering
54 levels
55 life time
56 loss
57 major fragments
58 mass loss
59 model scenarios
60 non-gravitational forces
61 nucleus
62 nucleus splitting
63 number statistics
64 outburst
65 parent nucleus
66 phenomenon
67 physical processes
68 presence
69 presence of fragments
70 pressure
71 process
72 products
73 range
74 role
75 rotational splitting
76 same time
77 scenarios
78 secondary products
79 separation
80 severity
81 significant mass loss
82 size
83 size distribution
84 small boulders
85 solar system
86 splitting
87 splitting events
88 splitting observations
89 statistics
90 structure
91 surface layering
92 system
93 tail
94 tidal disruption
95 time
96 whole family
97 wide range
98 schema:name Comet Splitting – Observations and Model Scenarios
99 schema:pagination 91-115
100 schema:productId N1b0ab45dcbe34c019ce6ef8ff24e612e
101 N36c84a1c0c9a47f0939ef1405b403be3
102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001456013
103 https://doi.org/10.1023/a:1021538201389
104 schema:sdDatePublished 2022-11-24T20:48
105 schema:sdLicense https://scigraph.springernature.com/explorer/license/
106 schema:sdPublisher N72e287b23a44439b98e78521db94e854
107 schema:url https://doi.org/10.1023/a:1021538201389
108 sgo:license sg:explorer/license/
109 sgo:sdDataset articles
110 rdf:type schema:ScholarlyArticle
111 N0802e10194704e40941048ed8c3c8a9f rdf:first sg:person.01010204607.24
112 rdf:rest rdf:nil
113 N1b0ab45dcbe34c019ce6ef8ff24e612e schema:name dimensions_id
114 schema:value pub.1001456013
115 rdf:type schema:PropertyValue
116 N36c84a1c0c9a47f0939ef1405b403be3 schema:name doi
117 schema:value 10.1023/a:1021538201389
118 rdf:type schema:PropertyValue
119 N72e287b23a44439b98e78521db94e854 schema:name Springer Nature - SN SciGraph project
120 rdf:type schema:Organization
121 N8bb8f24086224d23aff21cac7359bbb6 schema:issueNumber 1-4
122 rdf:type schema:PublicationIssue
123 N9f0000574c614c62b0a2ccdd1ed6a3e7 schema:volumeNumber 89
124 rdf:type schema:PublicationVolume
125 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
126 schema:name Physical Sciences
127 rdf:type schema:DefinedTerm
128 anzsrc-for:0201 schema:inDefinedTermSet anzsrc-for:
129 schema:name Astronomical and Space Sciences
130 rdf:type schema:DefinedTerm
131 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
132 schema:name Earth Sciences
133 rdf:type schema:DefinedTerm
134 anzsrc-for:0403 schema:inDefinedTermSet anzsrc-for:
135 schema:name Geology
136 rdf:type schema:DefinedTerm
137 sg:journal.1026186 schema:issn 0167-9295
138 1573-0794
139 schema:name Earth, Moon, and Planets
140 schema:publisher Springer Nature
141 rdf:type schema:Periodical
142 sg:person.01010204607.24 schema:affiliation grid-institutes:grid.440369.c
143 schema:familyName Boehnhardt
144 schema:givenName Hermann
145 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01010204607.24
146 rdf:type schema:Person
147 sg:pub.10.1007/bf00117190 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024583871
148 https://doi.org/10.1007/bf00117190
149 rdf:type schema:CreativeWork
150 sg:pub.10.1007/bf00896489 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047140061
151 https://doi.org/10.1007/bf00896489
152 rdf:type schema:CreativeWork
153 sg:pub.10.1023/a:1005925214405 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043963078
154 https://doi.org/10.1023/a:1005925214405
155 rdf:type schema:CreativeWork
156 sg:pub.10.1023/a:1006230712665 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007610858
157 https://doi.org/10.1023/a:1006230712665
158 rdf:type schema:CreativeWork
159 grid-institutes:grid.440369.c schema:alternateName European Southern Observatory ESO, Alonso de Cordova 3107, Santiago de, Chile
160 schema:name European Southern Observatory ESO, Alonso de Cordova 3107, Santiago de, Chile
161 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...