Equation of State for Molten Alkali Metals from Surface Tension. Part II View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1998-01

AUTHORS

N. Mehdipour, A. Boushehri

ABSTRACT

This work presents a new method for predicting the equation of state for molten alkali metals, based on statistical–mechanical perturbation theory from two scaling constants that are available from measurements at ordinary pressures and temperatures. The scaling constants are the surface tension and the liquid density at the boiling temperature (γb, ρb). Also, a reference temperature, TRef, is presented at which the product (TRefTb1/2) is an advantageous corresponding temperature for the second virial coefficient, B2(T). The virial coefficient of alkali metals cannot be expected to obey a law of corresponding states for normal fluids, because two singlet and triplet potentials are involved. The free parameter of the Ihm–Song–Mason equation of state compensates for the uncertainties in B2(T). The vapor pressure of molten alkali metals at low temperatures is very low and the experimental data for B2(T) of these metals are scarce. Therefore, an equation of state for alkali metals from the surface tension and liquid density at boiling temperature (γb, ρb) is a suitable choice. The results, the density of Li through Cs from the melting point up to several hundred degrees above the boiling temperature, are within 5%. More... »

PAGES

331-340

References to SciGraph publications

  • 1995-11. An analytical equation of state for molten alkali metals in INTERNATIONAL JOURNAL OF THERMOPHYSICS
  • 1996-07. Equation of state for compressed liquids from surface tension in INTERNATIONAL JOURNAL OF THERMOPHYSICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1023/a:1021475808271

    DOI

    http://dx.doi.org/10.1023/a:1021475808271

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1021829039


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Materials Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "familyName": "Mehdipour", 
            "givenName": "N.", 
            "id": "sg:person.0712722573.26", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0712722573.26"
            ], 
            "type": "Person"
          }, 
          {
            "familyName": "Boushehri", 
            "givenName": "A.", 
            "id": "sg:person.013626026353.85", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013626026353.85"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf02083551", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002949248", 
              "https://doi.org/10.1007/bf02083551"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02083551", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002949248", 
              "https://doi.org/10.1007/bf02083551"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01439197", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032884572", 
              "https://doi.org/10.1007/bf01439197"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01439197", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032884572", 
              "https://doi.org/10.1007/bf01439197"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/bbpc.19940980113", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040795630"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/j100566a018", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055673061"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/je60048a002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055886725"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.457252", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058035264"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.460684", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058038695"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1119/1.1972619", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062243852"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1998-01", 
        "datePublishedReg": "1998-01-01", 
        "description": "This work presents a new method for predicting the equation of state for molten alkali metals, based on statistical\u2013mechanical perturbation theory from two scaling constants that are available from measurements at ordinary pressures and temperatures. The scaling constants are the surface tension and the liquid density at the boiling temperature (\u03b3b, \u03c1b). Also, a reference temperature, TRef, is presented at which the product (TRefTb1/2) is an advantageous corresponding temperature for the second virial coefficient, B2(T). The virial coefficient of alkali metals cannot be expected to obey a law of corresponding states for normal fluids, because two singlet and triplet potentials are involved. The free parameter of the Ihm\u2013Song\u2013Mason equation of state compensates for the uncertainties in B2(T). The vapor pressure of molten alkali metals at low temperatures is very low and the experimental data for B2(T) of these metals are scarce. Therefore, an equation of state for alkali metals from the surface tension and liquid density at boiling temperature (\u03b3b, \u03c1b) is a suitable choice. The results, the density of Li through Cs from the melting point up to several hundred degrees above the boiling temperature, are within 5%.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1023/a:1021475808271", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1043587", 
            "issn": [
              "0195-928X", 
              "1572-9567"
            ], 
            "name": "International Journal of Thermophysics", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "19"
          }
        ], 
        "name": "Equation of State for Molten Alkali Metals from Surface Tension. Part II", 
        "pagination": "331-340", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "68006832c36ae061df4e75149630eaa8e33dc86d8bfb85eb1f39e38b2e063488"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1023/a:1021475808271"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1021829039"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1023/a:1021475808271", 
          "https://app.dimensions.ai/details/publication/pub.1021829039"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T18:19", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8675_00000505.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1023%2FA%3A1021475808271"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1023/a:1021475808271'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1023/a:1021475808271'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1023/a:1021475808271'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1023/a:1021475808271'


     

    This table displays all metadata directly associated to this object as RDF triples.

    89 TRIPLES      21 PREDICATES      35 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1023/a:1021475808271 schema:about anzsrc-for:09
    2 anzsrc-for:0912
    3 schema:author N3d5405568037430798adfd682856c695
    4 schema:citation sg:pub.10.1007/bf01439197
    5 sg:pub.10.1007/bf02083551
    6 https://doi.org/10.1002/bbpc.19940980113
    7 https://doi.org/10.1021/j100566a018
    8 https://doi.org/10.1021/je60048a002
    9 https://doi.org/10.1063/1.457252
    10 https://doi.org/10.1063/1.460684
    11 https://doi.org/10.1119/1.1972619
    12 schema:datePublished 1998-01
    13 schema:datePublishedReg 1998-01-01
    14 schema:description This work presents a new method for predicting the equation of state for molten alkali metals, based on statistical–mechanical perturbation theory from two scaling constants that are available from measurements at ordinary pressures and temperatures. The scaling constants are the surface tension and the liquid density at the boiling temperature (γb, ρb). Also, a reference temperature, TRef, is presented at which the product (TRefTb1/2) is an advantageous corresponding temperature for the second virial coefficient, B2(T). The virial coefficient of alkali metals cannot be expected to obey a law of corresponding states for normal fluids, because two singlet and triplet potentials are involved. The free parameter of the Ihm–Song–Mason equation of state compensates for the uncertainties in B2(T). The vapor pressure of molten alkali metals at low temperatures is very low and the experimental data for B2(T) of these metals are scarce. Therefore, an equation of state for alkali metals from the surface tension and liquid density at boiling temperature (γb, ρb) is a suitable choice. The results, the density of Li through Cs from the melting point up to several hundred degrees above the boiling temperature, are within 5%.
    15 schema:genre research_article
    16 schema:inLanguage en
    17 schema:isAccessibleForFree false
    18 schema:isPartOf Nd0dea573da084beaadc10ec298edaf59
    19 Nfb1b6c85ab744f23bd9effc78e4e1653
    20 sg:journal.1043587
    21 schema:name Equation of State for Molten Alkali Metals from Surface Tension. Part II
    22 schema:pagination 331-340
    23 schema:productId N3553865fe0ff4828a766592c132e092c
    24 Nb96162bfc076498ea9bde48f7a730dba
    25 Nc0a8f875e3214baeb623f4b07916f6da
    26 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021829039
    27 https://doi.org/10.1023/a:1021475808271
    28 schema:sdDatePublished 2019-04-10T18:19
    29 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    30 schema:sdPublisher N2ff8763cc3d5463c8120ccd8a0380617
    31 schema:url http://link.springer.com/10.1023%2FA%3A1021475808271
    32 sgo:license sg:explorer/license/
    33 sgo:sdDataset articles
    34 rdf:type schema:ScholarlyArticle
    35 N2ff8763cc3d5463c8120ccd8a0380617 schema:name Springer Nature - SN SciGraph project
    36 rdf:type schema:Organization
    37 N3553865fe0ff4828a766592c132e092c schema:name doi
    38 schema:value 10.1023/a:1021475808271
    39 rdf:type schema:PropertyValue
    40 N3d5405568037430798adfd682856c695 rdf:first sg:person.0712722573.26
    41 rdf:rest Nb9edcf70770840438c8d38bb3b0dbfaa
    42 Nb96162bfc076498ea9bde48f7a730dba schema:name readcube_id
    43 schema:value 68006832c36ae061df4e75149630eaa8e33dc86d8bfb85eb1f39e38b2e063488
    44 rdf:type schema:PropertyValue
    45 Nb9edcf70770840438c8d38bb3b0dbfaa rdf:first sg:person.013626026353.85
    46 rdf:rest rdf:nil
    47 Nc0a8f875e3214baeb623f4b07916f6da schema:name dimensions_id
    48 schema:value pub.1021829039
    49 rdf:type schema:PropertyValue
    50 Nd0dea573da084beaadc10ec298edaf59 schema:volumeNumber 19
    51 rdf:type schema:PublicationVolume
    52 Nfb1b6c85ab744f23bd9effc78e4e1653 schema:issueNumber 1
    53 rdf:type schema:PublicationIssue
    54 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    55 schema:name Engineering
    56 rdf:type schema:DefinedTerm
    57 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
    58 schema:name Materials Engineering
    59 rdf:type schema:DefinedTerm
    60 sg:journal.1043587 schema:issn 0195-928X
    61 1572-9567
    62 schema:name International Journal of Thermophysics
    63 rdf:type schema:Periodical
    64 sg:person.013626026353.85 schema:familyName Boushehri
    65 schema:givenName A.
    66 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013626026353.85
    67 rdf:type schema:Person
    68 sg:person.0712722573.26 schema:familyName Mehdipour
    69 schema:givenName N.
    70 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0712722573.26
    71 rdf:type schema:Person
    72 sg:pub.10.1007/bf01439197 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032884572
    73 https://doi.org/10.1007/bf01439197
    74 rdf:type schema:CreativeWork
    75 sg:pub.10.1007/bf02083551 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002949248
    76 https://doi.org/10.1007/bf02083551
    77 rdf:type schema:CreativeWork
    78 https://doi.org/10.1002/bbpc.19940980113 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040795630
    79 rdf:type schema:CreativeWork
    80 https://doi.org/10.1021/j100566a018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055673061
    81 rdf:type schema:CreativeWork
    82 https://doi.org/10.1021/je60048a002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055886725
    83 rdf:type schema:CreativeWork
    84 https://doi.org/10.1063/1.457252 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058035264
    85 rdf:type schema:CreativeWork
    86 https://doi.org/10.1063/1.460684 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058038695
    87 rdf:type schema:CreativeWork
    88 https://doi.org/10.1119/1.1972619 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062243852
    89 rdf:type schema:CreativeWork
     




    Preview window. Press ESC to close (or click here)


    ...