Source Apportionment in the Town of La Spezia (Italy) by Continuous Aerosol Sampling and PIXE Analysis View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2002-09

AUTHORS

Silvia Nava, Paolo Prati, Franco Lucarelli, Pier Andrea Mandò, Alessandro Zucchiatti

ABSTRACT

We describe the results of an aerosol sampling campaign performedin 1999 in the medium-size industrial town of La Spezia, in theNorthwest of Italy. We used two-stage continuous streakersamplers in three different sites and periods of the year. This kind of samplers allows the separation of the PM10 andPM2.2 fractions of the particulate matter. Moreover, the hourly resolution in the aerosol collection is particularly useful inan urban environment where, typically, many pollution sourceswith fast variations are present. Up to 1700 samples have beenanalysed by Particle Induced X-ray Emission (PIXE) at the INFNaccelerator facility in Florence, obtaining hourly concentrationfor about 20 elements from Na to Pb, with a sensitivity rangingfrom below 1 to about 10 ng m-3. The total hourly aerosolmass has been estimated with an optical analysis of the samesamples performed (before the PIXE analysis) by an equipment designed and mounted in Genoa. An extensive statistical analysisof the data included standard and Absolute Principal ComponentFactor Analysis (PCFA and APCFA) to deduce the compositionand the weight of the major aerosol sources in both fractions.Thorough different statistical approaches, we generally resolvedcontributions from vehicle emission, fossil fuel combustion,soil-road dust and sea salt aerosol. More... »

PAGES

247-260

Identifiers

URI

http://scigraph.springernature.com/pub.10.1023/a:1021339502467

DOI

http://dx.doi.org/10.1023/a:1021339502467

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1019456636


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0915", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Interdisciplinary Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "Dipartimento di Fisica and INFN, Genova, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nava", 
        "givenName": "Silvia", 
        "id": "sg:person.0603531424.54", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0603531424.54"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Dipartimento di Fisica and INFN, Firenze, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Prati", 
        "givenName": "Paolo", 
        "id": "sg:person.0651644624.79", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0651644624.79"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Dipartimento di Fisica and INFN, Firenze, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lucarelli", 
        "givenName": "Franco", 
        "id": "sg:person.01261022324.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01261022324.35"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Dipartimento di Fisica and INFN, Firenze, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mand\u00f2", 
        "givenName": "Pier Andrea", 
        "id": "sg:person.011546775143.94", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011546775143.94"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Dipartimento di Fisica and INFN, Genova, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zucchiatti", 
        "givenName": "Alessandro", 
        "id": "sg:person.012601176725.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012601176725.42"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/1352-2310(95)00322-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004265525"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0168-583x(99)00708-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019082924"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0004-6981(85)90132-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020212567"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0004-6981(85)90132-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020212567"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0168-583x(90)90848-o", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030898898"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0168-583x(90)90848-o", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030898898"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0168-583x(98)01075-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039681959"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0168-583x(98)01075-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039681959"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0168-583x(95)01409-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045449054"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0004-6981(82)90463-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048701756"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0004-6981(82)90463-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048701756"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2002-09", 
    "datePublishedReg": "2002-09-01", 
    "description": "We describe the results of an aerosol sampling campaign performedin 1999 in the medium-size industrial town of La Spezia, in theNorthwest of Italy. We used two-stage continuous streakersamplers in three different sites and periods of the year. This kind of samplers allows the separation of the PM10 andPM2.2 fractions of the particulate matter. Moreover, the hourly resolution in the aerosol collection is particularly useful inan urban environment where, typically, many pollution sourceswith fast variations are present. Up to 1700 samples have beenanalysed by Particle Induced X-ray Emission (PIXE) at the INFNaccelerator facility in Florence, obtaining hourly concentrationfor about 20 elements from Na to Pb, with a sensitivity rangingfrom below 1 to about 10 ng m-3. The total hourly aerosolmass has been estimated with an optical analysis of the samesamples performed (before the PIXE analysis) by an equipment designed and mounted in Genoa. An extensive statistical analysisof the data included standard and Absolute Principal ComponentFactor Analysis (PCFA and APCFA) to deduce the compositionand the weight of the major aerosol sources in both fractions.Thorough different statistical approaches, we generally resolvedcontributions from vehicle emission, fossil fuel combustion,soil-road dust and sea salt aerosol.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1023/a:1021339502467", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1312032", 
        "issn": [
          "1567-7230", 
          "1573-2940"
        ], 
        "name": "Water, Air, & Soil Pollution: Focus", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5-6", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "2"
      }
    ], 
    "name": "Source Apportionment in the Town of La Spezia (Italy) by Continuous Aerosol Sampling and PIXE Analysis", 
    "pagination": "247-260", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "5cb4354fe1778d9f1f5b3c42a60d52ceceb395b27087558da4aeb7d947bd6a32"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1023/a:1021339502467"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1019456636"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1023/a:1021339502467", 
      "https://app.dimensions.ai/details/publication/pub.1019456636"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T23:22", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8693_00000504.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1023%2FA%3A1021339502467"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1023/a:1021339502467'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1023/a:1021339502467'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1023/a:1021339502467'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1023/a:1021339502467'


 

This table displays all metadata directly associated to this object as RDF triples.

117 TRIPLES      21 PREDICATES      34 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1023/a:1021339502467 schema:about anzsrc-for:09
2 anzsrc-for:0915
3 schema:author Nb8fa03981f284184b696ad542b03689b
4 schema:citation https://doi.org/10.1016/0004-6981(82)90463-2
5 https://doi.org/10.1016/0004-6981(85)90132-5
6 https://doi.org/10.1016/0168-583x(90)90848-o
7 https://doi.org/10.1016/0168-583x(95)01409-8
8 https://doi.org/10.1016/1352-2310(95)00322-3
9 https://doi.org/10.1016/s0168-583x(98)01075-1
10 https://doi.org/10.1016/s0168-583x(99)00708-9
11 schema:datePublished 2002-09
12 schema:datePublishedReg 2002-09-01
13 schema:description We describe the results of an aerosol sampling campaign performedin 1999 in the medium-size industrial town of La Spezia, in theNorthwest of Italy. We used two-stage continuous streakersamplers in three different sites and periods of the year. This kind of samplers allows the separation of the PM10 andPM2.2 fractions of the particulate matter. Moreover, the hourly resolution in the aerosol collection is particularly useful inan urban environment where, typically, many pollution sourceswith fast variations are present. Up to 1700 samples have beenanalysed by Particle Induced X-ray Emission (PIXE) at the INFNaccelerator facility in Florence, obtaining hourly concentrationfor about 20 elements from Na to Pb, with a sensitivity rangingfrom below 1 to about 10 ng m-3. The total hourly aerosolmass has been estimated with an optical analysis of the samesamples performed (before the PIXE analysis) by an equipment designed and mounted in Genoa. An extensive statistical analysisof the data included standard and Absolute Principal ComponentFactor Analysis (PCFA and APCFA) to deduce the compositionand the weight of the major aerosol sources in both fractions.Thorough different statistical approaches, we generally resolvedcontributions from vehicle emission, fossil fuel combustion,soil-road dust and sea salt aerosol.
14 schema:genre research_article
15 schema:inLanguage en
16 schema:isAccessibleForFree false
17 schema:isPartOf N193c6416cb0c4665a70434eb365881c0
18 N809d218707434230a546ce01eeef9c0a
19 sg:journal.1312032
20 schema:name Source Apportionment in the Town of La Spezia (Italy) by Continuous Aerosol Sampling and PIXE Analysis
21 schema:pagination 247-260
22 schema:productId N0609d82aa94049e7a7c11ba59433f91c
23 N41f14ac04aef41969304c0e16a1a57ce
24 N97910eeb084e4eceb97370a3e93b28e1
25 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019456636
26 https://doi.org/10.1023/a:1021339502467
27 schema:sdDatePublished 2019-04-10T23:22
28 schema:sdLicense https://scigraph.springernature.com/explorer/license/
29 schema:sdPublisher N67c6d98e71de4bc49f73fea728a150c4
30 schema:url http://link.springer.com/10.1023%2FA%3A1021339502467
31 sgo:license sg:explorer/license/
32 sgo:sdDataset articles
33 rdf:type schema:ScholarlyArticle
34 N0354f7a5737845b892b865a14ab4cc17 schema:name Dipartimento di Fisica and INFN, Genova, Italy
35 rdf:type schema:Organization
36 N0609d82aa94049e7a7c11ba59433f91c schema:name doi
37 schema:value 10.1023/a:1021339502467
38 rdf:type schema:PropertyValue
39 N090cb72d2d68440b8340788b4be2b391 rdf:first sg:person.012601176725.42
40 rdf:rest rdf:nil
41 N193c6416cb0c4665a70434eb365881c0 schema:issueNumber 5-6
42 rdf:type schema:PublicationIssue
43 N1bc930e79cc5461591cd7911cd8c2064 schema:name Dipartimento di Fisica and INFN, Firenze, Italy
44 rdf:type schema:Organization
45 N2b69c968429746d096142e51da6da5a3 schema:name Dipartimento di Fisica and INFN, Genova, Italy
46 rdf:type schema:Organization
47 N3aa41745c9a14428bd04eb504c9acc56 schema:name Dipartimento di Fisica and INFN, Firenze, Italy
48 rdf:type schema:Organization
49 N41f14ac04aef41969304c0e16a1a57ce schema:name dimensions_id
50 schema:value pub.1019456636
51 rdf:type schema:PropertyValue
52 N67c6d98e71de4bc49f73fea728a150c4 schema:name Springer Nature - SN SciGraph project
53 rdf:type schema:Organization
54 N7e1d72a4649941f09661e9ae3f0129bc rdf:first sg:person.011546775143.94
55 rdf:rest N090cb72d2d68440b8340788b4be2b391
56 N809d218707434230a546ce01eeef9c0a schema:volumeNumber 2
57 rdf:type schema:PublicationVolume
58 N8c7fabe541f64016a0782f738bd84073 schema:name Dipartimento di Fisica and INFN, Firenze, Italy
59 rdf:type schema:Organization
60 N94756a7e09044e1dacf6b53fca504204 rdf:first sg:person.0651644624.79
61 rdf:rest Nebe0b609569b4a37b4ab5b2b1c85f485
62 N97910eeb084e4eceb97370a3e93b28e1 schema:name readcube_id
63 schema:value 5cb4354fe1778d9f1f5b3c42a60d52ceceb395b27087558da4aeb7d947bd6a32
64 rdf:type schema:PropertyValue
65 Nb8fa03981f284184b696ad542b03689b rdf:first sg:person.0603531424.54
66 rdf:rest N94756a7e09044e1dacf6b53fca504204
67 Nebe0b609569b4a37b4ab5b2b1c85f485 rdf:first sg:person.01261022324.35
68 rdf:rest N7e1d72a4649941f09661e9ae3f0129bc
69 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
70 schema:name Engineering
71 rdf:type schema:DefinedTerm
72 anzsrc-for:0915 schema:inDefinedTermSet anzsrc-for:
73 schema:name Interdisciplinary Engineering
74 rdf:type schema:DefinedTerm
75 sg:journal.1312032 schema:issn 1567-7230
76 1573-2940
77 schema:name Water, Air, & Soil Pollution: Focus
78 rdf:type schema:Periodical
79 sg:person.011546775143.94 schema:affiliation N1bc930e79cc5461591cd7911cd8c2064
80 schema:familyName Mandò
81 schema:givenName Pier Andrea
82 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011546775143.94
83 rdf:type schema:Person
84 sg:person.012601176725.42 schema:affiliation N2b69c968429746d096142e51da6da5a3
85 schema:familyName Zucchiatti
86 schema:givenName Alessandro
87 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012601176725.42
88 rdf:type schema:Person
89 sg:person.01261022324.35 schema:affiliation N8c7fabe541f64016a0782f738bd84073
90 schema:familyName Lucarelli
91 schema:givenName Franco
92 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01261022324.35
93 rdf:type schema:Person
94 sg:person.0603531424.54 schema:affiliation N0354f7a5737845b892b865a14ab4cc17
95 schema:familyName Nava
96 schema:givenName Silvia
97 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0603531424.54
98 rdf:type schema:Person
99 sg:person.0651644624.79 schema:affiliation N3aa41745c9a14428bd04eb504c9acc56
100 schema:familyName Prati
101 schema:givenName Paolo
102 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0651644624.79
103 rdf:type schema:Person
104 https://doi.org/10.1016/0004-6981(82)90463-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048701756
105 rdf:type schema:CreativeWork
106 https://doi.org/10.1016/0004-6981(85)90132-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020212567
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1016/0168-583x(90)90848-o schema:sameAs https://app.dimensions.ai/details/publication/pub.1030898898
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1016/0168-583x(95)01409-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045449054
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1016/1352-2310(95)00322-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004265525
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1016/s0168-583x(98)01075-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039681959
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1016/s0168-583x(99)00708-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019082924
117 rdf:type schema:CreativeWork
 




Preview window. Press ESC to close (or click here)


...