Climate System Modeling in the Framework of the Tolerable Windows Approach: The ICLIPS Climate Model View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2003-01

AUTHORS

Thomas Bruckner, Georg Hooss, Hans-Martin Füssel, Klaus Hasselmann

ABSTRACT

The computational burden associated with applications of theTolerable Windows Approach (TWA) considerably exceeds that oftraditional integrated assessments of global climate change. Aspart of the ICLIPS (Integrated Assessment of Climate ProtectionStrategies) project, a computationally efficient climate model hasbeen developed that can be included in integrated assessmentmodels of any kind. The ICLIPS climate model (ICM) is implementedin GAMS. It is driven by anthropogenic emissions of CO2,CH4, N2O, halocarbons, SF6, andSO2. Theoutput includes transient patterns of near-surface airtemperature, total column-integrated cloud cover fraction,precipitation, humidity, and global mean sea-level rise. Thecarbon cycle module explicitly treats the nonlinear sea watercarbon chemistry and the nonlinear CO2 fertilized biosphereuptake. Patterns of the impact-relevant climate variables arederived form empirical orthogonal function (EOF) analysis andscaled by the principal component of temperature change. Theevolution of the latter is derived from a box-model-typedifferential analogue to its impulse response function convolutionintegral. We present a description of the ICM components and someresults to demonstrate the model's applicability in the TWA setting. More... »

PAGES

119-137

References to SciGraph publications

  • 1998. The tolerable windows approach to climate control: Optimization, risks, and perspectives in COST-BENEFIT ANALYSES OF CLIMATE CHANGE
  • 1997-05. REGIONAL CLIMATE CHANGE SCENARIOS FOR VULNERABILITY AND ADAPTATION ASSESSMENTS in CLIMATIC CHANGE
  • 2001-12. A nonlinear impulse response model of the coupled carbon cycle-climate system (NICCS) in CLIMATE DYNAMICS
  • 1993-11. On the cold start problem in transient simulations with coupled atmosphere-ocean models in CLIMATE DYNAMICS
  • 1992-05. Implications for climate and sea level of revised IPCC emissions scenarios in NATURE
  • 2003-01. Methodological Aspects of the Tolerable Windows Approach in CLIMATIC CHANGE
  • 1998-03. Periodically synchronously coupled integrations with the atmosphere-ocean general circulation model ECHAM3/LSG in CLIMATE DYNAMICS
  • 1994-01. A simple model for estimating methane concentration and lifetime variations in CLIMATE DYNAMICS
  • 2003-01. Integrated Assessment of Long-term Climate Policies: Part 2 – Model Results and Uncertainty Analysis in CLIMATIC CHANGE
  • 1989-12. Managing atmospheric CO2 in CLIMATIC CHANGE
  • 1996. World in Transition: Ways Towards Global Environmental Solutions, Annual Report 1995 in NONE
  • 1987-08. Transport and storage of CO2 in the ocean ——an inorganic ocean-circulation carbon cycle model in CLIMATE DYNAMICS
  • 2003-01. Integrated Assessment of Long-term Climate Policies: Part 1 – Model Presentation in CLIMATIC CHANGE
  • 2003-01. Economic Development and Emission Control over the Long Term: The ICLIPS Aggregated Economic Model in CLIMATIC CHANGE
  • 1999-03. The Tolerable Windows Approach: Theoretical and Methodological Foundations in CLIMATIC CHANGE
  • 2001-01. Long-term climate changes due to increased CO2 concentration in the coupled atmosphere-ocean general circulation model ECHAM3/LSG in CLIMATE DYNAMICS
  • 1999-03. Towards the Construction of Climate Change Scenarios in CLIMATIC CHANGE
  • 1993-04. Use of general circulation model output in the creation of climate change scenarios for impact analysis in CLIMATIC CHANGE
  • 1988-09. Future CFC concentrations under the Montreal Protocol and their greenhouse-effect implications in NATURE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1023/a:1021300924356

    DOI

    http://dx.doi.org/10.1023/a:1021300924356

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1041254336


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Earth Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0401", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Atmospheric Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Institute for Energy Engineering, Technical University of Berlin, Marchstr. 18, D-10587, Berlin, Germany", 
              "id": "http://www.grid.ac/institutes/grid.6734.6", 
              "name": [
                "Institute for Energy Engineering, Technical University of Berlin, Marchstr. 18, D-10587, Berlin, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Bruckner", 
            "givenName": "Thomas", 
            "id": "sg:person.013140325577.04", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013140325577.04"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Max Planck Institute for Meteorology, Bundesstra\u00df e 55, D-20146, Hamburg, Germany", 
              "id": "http://www.grid.ac/institutes/grid.450268.d", 
              "name": [
                "Max Planck Institute for Meteorology, Bundesstra\u00df e 55, D-20146, Hamburg, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hooss", 
            "givenName": "Georg", 
            "id": "sg:person.07721366375.90", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07721366375.90"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Potsdam Institute for Climate Impact Research, Telegrafenberg, D-14473, Potsdam, Germany", 
              "id": "http://www.grid.ac/institutes/grid.4556.2", 
              "name": [
                "Potsdam Institute for Climate Impact Research, Telegrafenberg, D-14473, Potsdam, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "F\u00fcssel", 
            "givenName": "Hans-Martin", 
            "id": "sg:person.07773241327.35", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07773241327.35"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Max Planck Institute for Meteorology, Bundesstra\u00df e 55, D-20146, Hamburg, Germany", 
              "id": "http://www.grid.ac/institutes/grid.450268.d", 
              "name": [
                "Max Planck Institute for Meteorology, Bundesstra\u00df e 55, D-20146, Hamburg, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hasselmann", 
            "givenName": "Klaus", 
            "id": "sg:person.011507631147.31", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011507631147.31"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/335333a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052772117", 
              "https://doi.org/10.1038/335333a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01091621", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039202236", 
              "https://doi.org/10.1007/bf01091621"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/357293a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027555370", 
              "https://doi.org/10.1038/357293a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1005300731681", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010490759", 
              "https://doi.org/10.1023/a:1005300731681"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1021388429866", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029943431", 
              "https://doi.org/10.1023/a:1021388429866"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1021392530774", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021797213", 
              "https://doi.org/10.1023/a:1021392530774"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00208251", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049765350", 
              "https://doi.org/10.1007/bf00208251"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1005466909820", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045135939", 
              "https://doi.org/10.1023/a:1005466909820"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1021384313027", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032992104", 
              "https://doi.org/10.1023/a:1021384313027"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-80180-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051416795", 
              "https://doi.org/10.1007/978-3-642-80180-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/pl00007925", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012247046", 
              "https://doi.org/10.1007/pl00007925"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01054491", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040451933", 
              "https://doi.org/10.1007/bf01054491"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00240464", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004040482", 
              "https://doi.org/10.1007/bf00240464"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1021332312119", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045058110", 
              "https://doi.org/10.1023/a:1021332312119"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s003820050221", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030324527", 
              "https://doi.org/10.1007/s003820050221"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00210008", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012875011", 
              "https://doi.org/10.1007/bf00210008"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1005487123751", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010887986", 
              "https://doi.org/10.1023/a:1005487123751"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s003820100170", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047788509", 
              "https://doi.org/10.1007/s003820100170"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-0348-8928-5_10", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029230625", 
              "https://doi.org/10.1007/978-3-0348-8928-5_10"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2003-01", 
        "datePublishedReg": "2003-01-01", 
        "description": "The computational burden associated with applications of theTolerable Windows Approach (TWA) considerably exceeds that oftraditional integrated assessments of global climate change. Aspart of the ICLIPS (Integrated Assessment of Climate ProtectionStrategies) project, a computationally efficient climate model hasbeen developed that can be included in integrated assessmentmodels of any kind. The ICLIPS climate model (ICM) is implementedin GAMS. It is driven by anthropogenic emissions of CO2,CH4, N2O, halocarbons, SF6, andSO2. Theoutput includes transient patterns of near-surface airtemperature, total column-integrated cloud cover fraction,precipitation, humidity, and global mean sea-level rise. Thecarbon cycle module explicitly treats the nonlinear sea watercarbon chemistry and the nonlinear CO2 fertilized biosphereuptake. Patterns of the impact-relevant climate variables arederived form empirical orthogonal function (EOF) analysis andscaled by the principal component of temperature change. Theevolution of the latter is derived from a box-model-typedifferential analogue to its impulse response function convolutionintegral. We present a description of the ICM components and someresults to demonstrate the model's applicability in the TWA setting.", 
        "genre": "article", 
        "id": "sg:pub.10.1023/a:1021300924356", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1028211", 
            "issn": [
              "0165-0009", 
              "1573-1480"
            ], 
            "name": "Climatic Change", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1-2", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "56"
          }
        ], 
        "keywords": [
          "climate models", 
          "global mean sea level rise", 
          "mean sea level rise", 
          "empirical orthogonal function (EOF) analysis", 
          "sea level rise", 
          "cloud cover fraction", 
          "global climate change", 
          "Tolerable Windows Approach", 
          "climate system", 
          "anthropogenic emissions", 
          "climate variables", 
          "cover fraction", 
          "climate change", 
          "cycle module", 
          "temperature changes", 
          "function analysis", 
          "model applicability", 
          "principal components", 
          "ICM components", 
          "precipitation", 
          "halocarbons", 
          "transient patterns", 
          "airtemperature", 
          "N2O", 
          "humidity", 
          "CO2", 
          "chemistry", 
          "theevolution", 
          "patterns", 
          "someresults", 
          "changes", 
          "SF6", 
          "rise", 
          "model", 
          "emission", 
          "components", 
          "theoutput", 
          "hasbeen", 
          "window approach", 
          "fraction", 
          "setting", 
          "applicability", 
          "project", 
          "assessment", 
          "analysis", 
          "description", 
          "system", 
          "variables", 
          "analogues", 
          "approach", 
          "framework", 
          "computational burden", 
          "applications", 
          "kind", 
          "module", 
          "GAMS", 
          "burden", 
          "aspart"
        ], 
        "name": "Climate System Modeling in the Framework of the Tolerable Windows Approach: The ICLIPS Climate Model", 
        "pagination": "119-137", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1041254336"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1023/a:1021300924356"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1023/a:1021300924356", 
          "https://app.dimensions.ai/details/publication/pub.1041254336"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-12-01T06:23", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_361.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1023/a:1021300924356"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1023/a:1021300924356'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1023/a:1021300924356'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1023/a:1021300924356'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1023/a:1021300924356'


     

    This table displays all metadata directly associated to this object as RDF triples.

    218 TRIPLES      21 PREDICATES      102 URIs      75 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1023/a:1021300924356 schema:about anzsrc-for:04
    2 anzsrc-for:0401
    3 schema:author Ncdc54f1d24e44b23a1432cceae7b0609
    4 schema:citation sg:pub.10.1007/978-3-0348-8928-5_10
    5 sg:pub.10.1007/978-3-642-80180-8
    6 sg:pub.10.1007/bf00208251
    7 sg:pub.10.1007/bf00210008
    8 sg:pub.10.1007/bf00240464
    9 sg:pub.10.1007/bf01054491
    10 sg:pub.10.1007/bf01091621
    11 sg:pub.10.1007/pl00007925
    12 sg:pub.10.1007/s003820050221
    13 sg:pub.10.1007/s003820100170
    14 sg:pub.10.1023/a:1005300731681
    15 sg:pub.10.1023/a:1005466909820
    16 sg:pub.10.1023/a:1005487123751
    17 sg:pub.10.1023/a:1021332312119
    18 sg:pub.10.1023/a:1021384313027
    19 sg:pub.10.1023/a:1021388429866
    20 sg:pub.10.1023/a:1021392530774
    21 sg:pub.10.1038/335333a0
    22 sg:pub.10.1038/357293a0
    23 schema:datePublished 2003-01
    24 schema:datePublishedReg 2003-01-01
    25 schema:description The computational burden associated with applications of theTolerable Windows Approach (TWA) considerably exceeds that oftraditional integrated assessments of global climate change. Aspart of the ICLIPS (Integrated Assessment of Climate ProtectionStrategies) project, a computationally efficient climate model hasbeen developed that can be included in integrated assessmentmodels of any kind. The ICLIPS climate model (ICM) is implementedin GAMS. It is driven by anthropogenic emissions of CO2,CH4, N2O, halocarbons, SF6, andSO2. Theoutput includes transient patterns of near-surface airtemperature, total column-integrated cloud cover fraction,precipitation, humidity, and global mean sea-level rise. Thecarbon cycle module explicitly treats the nonlinear sea watercarbon chemistry and the nonlinear CO2 fertilized biosphereuptake. Patterns of the impact-relevant climate variables arederived form empirical orthogonal function (EOF) analysis andscaled by the principal component of temperature change. Theevolution of the latter is derived from a box-model-typedifferential analogue to its impulse response function convolutionintegral. We present a description of the ICM components and someresults to demonstrate the model's applicability in the TWA setting.
    26 schema:genre article
    27 schema:isAccessibleForFree false
    28 schema:isPartOf N1f6ad7d1a2ab41478d4ae1a182044c9d
    29 N3de0d00fa1af4f2ea1361aea9d93eba4
    30 sg:journal.1028211
    31 schema:keywords CO2
    32 GAMS
    33 ICM components
    34 N2O
    35 SF6
    36 Tolerable Windows Approach
    37 airtemperature
    38 analogues
    39 analysis
    40 anthropogenic emissions
    41 applicability
    42 applications
    43 approach
    44 aspart
    45 assessment
    46 burden
    47 changes
    48 chemistry
    49 climate change
    50 climate models
    51 climate system
    52 climate variables
    53 cloud cover fraction
    54 components
    55 computational burden
    56 cover fraction
    57 cycle module
    58 description
    59 emission
    60 empirical orthogonal function (EOF) analysis
    61 fraction
    62 framework
    63 function analysis
    64 global climate change
    65 global mean sea level rise
    66 halocarbons
    67 hasbeen
    68 humidity
    69 kind
    70 mean sea level rise
    71 model
    72 model applicability
    73 module
    74 patterns
    75 precipitation
    76 principal components
    77 project
    78 rise
    79 sea level rise
    80 setting
    81 someresults
    82 system
    83 temperature changes
    84 theevolution
    85 theoutput
    86 transient patterns
    87 variables
    88 window approach
    89 schema:name Climate System Modeling in the Framework of the Tolerable Windows Approach: The ICLIPS Climate Model
    90 schema:pagination 119-137
    91 schema:productId Ndbfb72fa0a5c440789cf39fd284317e4
    92 Ne92279e563114cc4bdf1b710ded6b436
    93 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041254336
    94 https://doi.org/10.1023/a:1021300924356
    95 schema:sdDatePublished 2022-12-01T06:23
    96 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    97 schema:sdPublisher N3b184c5e9fe8421bb11a121754964521
    98 schema:url https://doi.org/10.1023/a:1021300924356
    99 sgo:license sg:explorer/license/
    100 sgo:sdDataset articles
    101 rdf:type schema:ScholarlyArticle
    102 N1f6ad7d1a2ab41478d4ae1a182044c9d schema:issueNumber 1-2
    103 rdf:type schema:PublicationIssue
    104 N3b184c5e9fe8421bb11a121754964521 schema:name Springer Nature - SN SciGraph project
    105 rdf:type schema:Organization
    106 N3de0d00fa1af4f2ea1361aea9d93eba4 schema:volumeNumber 56
    107 rdf:type schema:PublicationVolume
    108 N5cbdc328cc474783ae090f4b9beb62c2 rdf:first sg:person.07721366375.90
    109 rdf:rest Nc98d4f7e2cfe4d62b277ebf011ec3a40
    110 Nc98d4f7e2cfe4d62b277ebf011ec3a40 rdf:first sg:person.07773241327.35
    111 rdf:rest Ne0f0c481156543a28855461d9ae14153
    112 Ncdc54f1d24e44b23a1432cceae7b0609 rdf:first sg:person.013140325577.04
    113 rdf:rest N5cbdc328cc474783ae090f4b9beb62c2
    114 Ndbfb72fa0a5c440789cf39fd284317e4 schema:name dimensions_id
    115 schema:value pub.1041254336
    116 rdf:type schema:PropertyValue
    117 Ne0f0c481156543a28855461d9ae14153 rdf:first sg:person.011507631147.31
    118 rdf:rest rdf:nil
    119 Ne92279e563114cc4bdf1b710ded6b436 schema:name doi
    120 schema:value 10.1023/a:1021300924356
    121 rdf:type schema:PropertyValue
    122 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
    123 schema:name Earth Sciences
    124 rdf:type schema:DefinedTerm
    125 anzsrc-for:0401 schema:inDefinedTermSet anzsrc-for:
    126 schema:name Atmospheric Sciences
    127 rdf:type schema:DefinedTerm
    128 sg:journal.1028211 schema:issn 0165-0009
    129 1573-1480
    130 schema:name Climatic Change
    131 schema:publisher Springer Nature
    132 rdf:type schema:Periodical
    133 sg:person.011507631147.31 schema:affiliation grid-institutes:grid.450268.d
    134 schema:familyName Hasselmann
    135 schema:givenName Klaus
    136 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011507631147.31
    137 rdf:type schema:Person
    138 sg:person.013140325577.04 schema:affiliation grid-institutes:grid.6734.6
    139 schema:familyName Bruckner
    140 schema:givenName Thomas
    141 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013140325577.04
    142 rdf:type schema:Person
    143 sg:person.07721366375.90 schema:affiliation grid-institutes:grid.450268.d
    144 schema:familyName Hooss
    145 schema:givenName Georg
    146 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07721366375.90
    147 rdf:type schema:Person
    148 sg:person.07773241327.35 schema:affiliation grid-institutes:grid.4556.2
    149 schema:familyName Füssel
    150 schema:givenName Hans-Martin
    151 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07773241327.35
    152 rdf:type schema:Person
    153 sg:pub.10.1007/978-3-0348-8928-5_10 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029230625
    154 https://doi.org/10.1007/978-3-0348-8928-5_10
    155 rdf:type schema:CreativeWork
    156 sg:pub.10.1007/978-3-642-80180-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051416795
    157 https://doi.org/10.1007/978-3-642-80180-8
    158 rdf:type schema:CreativeWork
    159 sg:pub.10.1007/bf00208251 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049765350
    160 https://doi.org/10.1007/bf00208251
    161 rdf:type schema:CreativeWork
    162 sg:pub.10.1007/bf00210008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012875011
    163 https://doi.org/10.1007/bf00210008
    164 rdf:type schema:CreativeWork
    165 sg:pub.10.1007/bf00240464 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004040482
    166 https://doi.org/10.1007/bf00240464
    167 rdf:type schema:CreativeWork
    168 sg:pub.10.1007/bf01054491 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040451933
    169 https://doi.org/10.1007/bf01054491
    170 rdf:type schema:CreativeWork
    171 sg:pub.10.1007/bf01091621 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039202236
    172 https://doi.org/10.1007/bf01091621
    173 rdf:type schema:CreativeWork
    174 sg:pub.10.1007/pl00007925 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012247046
    175 https://doi.org/10.1007/pl00007925
    176 rdf:type schema:CreativeWork
    177 sg:pub.10.1007/s003820050221 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030324527
    178 https://doi.org/10.1007/s003820050221
    179 rdf:type schema:CreativeWork
    180 sg:pub.10.1007/s003820100170 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047788509
    181 https://doi.org/10.1007/s003820100170
    182 rdf:type schema:CreativeWork
    183 sg:pub.10.1023/a:1005300731681 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010490759
    184 https://doi.org/10.1023/a:1005300731681
    185 rdf:type schema:CreativeWork
    186 sg:pub.10.1023/a:1005466909820 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045135939
    187 https://doi.org/10.1023/a:1005466909820
    188 rdf:type schema:CreativeWork
    189 sg:pub.10.1023/a:1005487123751 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010887986
    190 https://doi.org/10.1023/a:1005487123751
    191 rdf:type schema:CreativeWork
    192 sg:pub.10.1023/a:1021332312119 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045058110
    193 https://doi.org/10.1023/a:1021332312119
    194 rdf:type schema:CreativeWork
    195 sg:pub.10.1023/a:1021384313027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032992104
    196 https://doi.org/10.1023/a:1021384313027
    197 rdf:type schema:CreativeWork
    198 sg:pub.10.1023/a:1021388429866 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029943431
    199 https://doi.org/10.1023/a:1021388429866
    200 rdf:type schema:CreativeWork
    201 sg:pub.10.1023/a:1021392530774 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021797213
    202 https://doi.org/10.1023/a:1021392530774
    203 rdf:type schema:CreativeWork
    204 sg:pub.10.1038/335333a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052772117
    205 https://doi.org/10.1038/335333a0
    206 rdf:type schema:CreativeWork
    207 sg:pub.10.1038/357293a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027555370
    208 https://doi.org/10.1038/357293a0
    209 rdf:type schema:CreativeWork
    210 grid-institutes:grid.450268.d schema:alternateName Max Planck Institute for Meteorology, Bundesstraß e 55, D-20146, Hamburg, Germany
    211 schema:name Max Planck Institute for Meteorology, Bundesstraß e 55, D-20146, Hamburg, Germany
    212 rdf:type schema:Organization
    213 grid-institutes:grid.4556.2 schema:alternateName Potsdam Institute for Climate Impact Research, Telegrafenberg, D-14473, Potsdam, Germany
    214 schema:name Potsdam Institute for Climate Impact Research, Telegrafenberg, D-14473, Potsdam, Germany
    215 rdf:type schema:Organization
    216 grid-institutes:grid.6734.6 schema:alternateName Institute for Energy Engineering, Technical University of Berlin, Marchstr. 18, D-10587, Berlin, Germany
    217 schema:name Institute for Energy Engineering, Technical University of Berlin, Marchstr. 18, D-10587, Berlin, Germany
    218 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...