Quasi-Contact S-R Metrics: Normal Form in R2n, Wave Front and Caustic in R4 View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2002-12

AUTHORS

G. Charlot

ABSTRACT

This paper deals with sub-Riemannian metrics in the quasi-contact case. First, in any even dimension, we construct normal coordinates, a normal form and invariants, which are the analogs of normal coordinates, normal form and classical invariants in Riemannian geometry. Second, in dimension 4, and thanks to this ‘normal form’, we study the local singularities of the exponential map. More... »

PAGES

217-263

References to SciGraph publications

  • 2000-07. On Sub-Riemannian Caustics and Wave Fronts for Contact Distributions in the Three-Space in JOURNAL OF DYNAMICAL AND CONTROL SYSTEMS
  • 1996-07. Small sub-Riemannian balls onR3 in JOURNAL OF DYNAMICAL AND CONTROL SYSTEMS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1023/a:1021199303685

    DOI

    http://dx.doi.org/10.1023/a:1021199303685

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1047666886


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "University of Montpellier", 
              "id": "https://www.grid.ac/institutes/grid.121334.6", 
              "name": [
                "Laboratoire GTA, Universit\u00e9 de Montpellier II, 34095, Montpellier cedex 5, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Charlot", 
            "givenName": "G.", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf02269424", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002116143", 
              "https://doi.org/10.1007/bf02269424"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02269424", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002116143", 
              "https://doi.org/10.1007/bf02269424"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0294-1449(00)00064-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011993070"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1009566723037", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051824929", 
              "https://doi.org/10.1023/a:1009566723037"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1051/cocv:1999114", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1056952250"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2002-12", 
        "datePublishedReg": "2002-12-01", 
        "description": "This paper deals with sub-Riemannian metrics in the quasi-contact case. First, in any even dimension, we construct normal coordinates, a normal form and invariants, which are the analogs of normal coordinates, normal form and classical invariants in Riemannian geometry. Second, in dimension 4, and thanks to this \u2018normal form\u2019, we study the local singularities of the exponential map.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1023/a:1021199303685", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1028030", 
            "issn": [
              "0167-8019", 
              "1572-9036"
            ], 
            "name": "Acta Applicandae Mathematicae", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "3", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "74"
          }
        ], 
        "name": "Quasi-Contact S-R Metrics: Normal Form in R2n, Wave Front and Caustic in R4", 
        "pagination": "217-263", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "e3128642b80fb37f7e8c19745c17eff7f75396ca93b4f8fea3598b5ed87343db"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1023/a:1021199303685"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1047666886"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1023/a:1021199303685", 
          "https://app.dimensions.ai/details/publication/pub.1047666886"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T17:30", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8672_00000507.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1023%2FA%3A1021199303685"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1023/a:1021199303685'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1023/a:1021199303685'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1023/a:1021199303685'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1023/a:1021199303685'


     

    This table displays all metadata directly associated to this object as RDF triples.

    74 TRIPLES      21 PREDICATES      31 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1023/a:1021199303685 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author N7295e0ebe7fc4f87acd56bf2b0838989
    4 schema:citation sg:pub.10.1007/bf02269424
    5 sg:pub.10.1023/a:1009566723037
    6 https://doi.org/10.1016/s0294-1449(00)00064-0
    7 https://doi.org/10.1051/cocv:1999114
    8 schema:datePublished 2002-12
    9 schema:datePublishedReg 2002-12-01
    10 schema:description This paper deals with sub-Riemannian metrics in the quasi-contact case. First, in any even dimension, we construct normal coordinates, a normal form and invariants, which are the analogs of normal coordinates, normal form and classical invariants in Riemannian geometry. Second, in dimension 4, and thanks to this ‘normal form’, we study the local singularities of the exponential map.
    11 schema:genre research_article
    12 schema:inLanguage en
    13 schema:isAccessibleForFree false
    14 schema:isPartOf N3aa0f8a6e96447f399574287d006e6ed
    15 N80175cb676c54909adb7bf0b3cace6b8
    16 sg:journal.1028030
    17 schema:name Quasi-Contact S-R Metrics: Normal Form in R2n, Wave Front and Caustic in R4
    18 schema:pagination 217-263
    19 schema:productId N8784860a86754896b3ab7910d80f7b29
    20 Nc4291b84a4ed45fcaff91438ca6d6820
    21 Nec3807baf82742a8ad182f6e9dbd8541
    22 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047666886
    23 https://doi.org/10.1023/a:1021199303685
    24 schema:sdDatePublished 2019-04-10T17:30
    25 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    26 schema:sdPublisher N027de414b6b4454c9357812b859110e8
    27 schema:url http://link.springer.com/10.1023%2FA%3A1021199303685
    28 sgo:license sg:explorer/license/
    29 sgo:sdDataset articles
    30 rdf:type schema:ScholarlyArticle
    31 N027de414b6b4454c9357812b859110e8 schema:name Springer Nature - SN SciGraph project
    32 rdf:type schema:Organization
    33 N2062b589f1ff4e418fcb072b6c8732ca schema:affiliation https://www.grid.ac/institutes/grid.121334.6
    34 schema:familyName Charlot
    35 schema:givenName G.
    36 rdf:type schema:Person
    37 N3aa0f8a6e96447f399574287d006e6ed schema:volumeNumber 74
    38 rdf:type schema:PublicationVolume
    39 N7295e0ebe7fc4f87acd56bf2b0838989 rdf:first N2062b589f1ff4e418fcb072b6c8732ca
    40 rdf:rest rdf:nil
    41 N80175cb676c54909adb7bf0b3cace6b8 schema:issueNumber 3
    42 rdf:type schema:PublicationIssue
    43 N8784860a86754896b3ab7910d80f7b29 schema:name dimensions_id
    44 schema:value pub.1047666886
    45 rdf:type schema:PropertyValue
    46 Nc4291b84a4ed45fcaff91438ca6d6820 schema:name readcube_id
    47 schema:value e3128642b80fb37f7e8c19745c17eff7f75396ca93b4f8fea3598b5ed87343db
    48 rdf:type schema:PropertyValue
    49 Nec3807baf82742a8ad182f6e9dbd8541 schema:name doi
    50 schema:value 10.1023/a:1021199303685
    51 rdf:type schema:PropertyValue
    52 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    53 schema:name Mathematical Sciences
    54 rdf:type schema:DefinedTerm
    55 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    56 schema:name Pure Mathematics
    57 rdf:type schema:DefinedTerm
    58 sg:journal.1028030 schema:issn 0167-8019
    59 1572-9036
    60 schema:name Acta Applicandae Mathematicae
    61 rdf:type schema:Periodical
    62 sg:pub.10.1007/bf02269424 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002116143
    63 https://doi.org/10.1007/bf02269424
    64 rdf:type schema:CreativeWork
    65 sg:pub.10.1023/a:1009566723037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051824929
    66 https://doi.org/10.1023/a:1009566723037
    67 rdf:type schema:CreativeWork
    68 https://doi.org/10.1016/s0294-1449(00)00064-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011993070
    69 rdf:type schema:CreativeWork
    70 https://doi.org/10.1051/cocv:1999114 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056952250
    71 rdf:type schema:CreativeWork
    72 https://www.grid.ac/institutes/grid.121334.6 schema:alternateName University of Montpellier
    73 schema:name Laboratoire GTA, Université de Montpellier II, 34095, Montpellier cedex 5, France
    74 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...