Volume Combustion Modes in Heterogeneous Reaction Systems View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2002-01

AUTHORS

A. S. Rogachev, A. S. Mukasyan, A. Varma

ABSTRACT

Volume combustion synthesis in metal–metal systems (i.e., Ni-Al and Cu-Al) was investigated. Both thermocouple and infrared imaging techniques were used to study the temperature–time history of the process. It was found that in both systems, volume combustion starts at a temperature near the melting point of aluminum. For the Cu-Al mixture, the reaction essentially occurs uniformly along the sample body; whereas, for Ni-Al, propagation of a rapid reaction wave is typically observed. The characteristic temperature gradient of this wave is more than an order of magnitude lower and the velocity of propagation is even higher, as compared with a conventional combustion wave. An explanation of the observed results based on a new class of wave, the so-called virtual combustion wave, is given. More... »

PAGES

31-36

Identifiers

URI

http://scigraph.springernature.com/pub.10.1023/a:1021096812808

DOI

http://dx.doi.org/10.1023/a:1021096812808

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1025621825


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0915", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Interdisciplinary Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Chemical Engineering and Center for Molecularly Engineered Materials, University of Notre Dame, 46556, Notre Dame, Indiana", 
          "id": "http://www.grid.ac/institutes/grid.131063.6", 
          "name": [
            "Department of Chemical Engineering and Center for Molecularly Engineered Materials, University of Notre Dame, 46556, Notre Dame, Indiana"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rogachev", 
        "givenName": "A. S.", 
        "id": "sg:person.016007751364.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016007751364.34"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Chemical Engineering and Center for Molecularly Engineered Materials, University of Notre Dame, 46556, Notre Dame, Indiana", 
          "id": "http://www.grid.ac/institutes/grid.131063.6", 
          "name": [
            "Department of Chemical Engineering and Center for Molecularly Engineered Materials, University of Notre Dame, 46556, Notre Dame, Indiana"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mukasyan", 
        "givenName": "A. S.", 
        "id": "sg:person.01252146121.40", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01252146121.40"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Chemical Engineering and Center for Molecularly Engineered Materials, University of Notre Dame, 46556, Notre Dame, Indiana", 
          "id": "http://www.grid.ac/institutes/grid.131063.6", 
          "name": [
            "Department of Chemical Engineering and Center for Molecularly Engineered Materials, University of Notre Dame, 46556, Notre Dame, Indiana"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Varma", 
        "givenName": "A.", 
        "id": "sg:person.015311351425.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015311351425.35"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf02546588", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041994750", 
          "https://doi.org/10.1007/bf02546588"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1557/jmr.1995.2471", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031808971", 
          "https://doi.org/10.1557/jmr.1995.2471"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01160566", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052089103", 
          "https://doi.org/10.1007/bf01160566"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00822461", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042283245", 
          "https://doi.org/10.1007/bf00822461"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2002-01", 
    "datePublishedReg": "2002-01-01", 
    "description": "Volume combustion synthesis in metal\u2013metal systems (i.e., Ni-Al and Cu-Al) was investigated. Both thermocouple and infrared imaging techniques were used to study the temperature\u2013time history of the process. It was found that in both systems, volume combustion starts at a temperature near the melting point of aluminum. For the Cu-Al mixture, the reaction essentially occurs uniformly along the sample body; whereas, for Ni-Al, propagation of a rapid reaction wave is typically observed. The characteristic temperature gradient of this wave is more than an order of magnitude lower and the velocity of propagation is even higher, as compared with a conventional combustion wave. An explanation of the observed results based on a new class of wave, the so-called virtual combustion wave, is given.", 
    "genre": "article", 
    "id": "sg:pub.10.1023/a:1021096812808", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1143463", 
        "issn": [
          "1064-7562", 
          "1573-4870"
        ], 
        "name": "Journal of Materials Synthesis and Processing", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "10"
      }
    ], 
    "keywords": [
      "combustion wave", 
      "Cu\u2013Al mixtures", 
      "metal-metal systems", 
      "temperature-time history", 
      "volume combustion synthesis", 
      "Ni-Al", 
      "combustion mode", 
      "volume combustion", 
      "combustion synthesis", 
      "temperature gradient", 
      "velocity of propagation", 
      "reaction wave", 
      "sample body", 
      "melting point", 
      "orders of magnitude", 
      "waves", 
      "heterogeneous reaction systems", 
      "propagation", 
      "thermocouples", 
      "combustion", 
      "observed results", 
      "aluminum", 
      "reaction system", 
      "velocity", 
      "temperature", 
      "system", 
      "gradient", 
      "new class", 
      "mixture", 
      "mode", 
      "process", 
      "technique", 
      "order", 
      "magnitude", 
      "results", 
      "point", 
      "body", 
      "reaction", 
      "synthesis", 
      "class", 
      "explanation", 
      "history", 
      "rapid reaction wave", 
      "characteristic temperature gradient", 
      "conventional combustion wave", 
      "virtual combustion wave", 
      "Volume Combustion Modes"
    ], 
    "name": "Volume Combustion Modes in Heterogeneous Reaction Systems", 
    "pagination": "31-36", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1025621825"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1023/a:1021096812808"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1023/a:1021096812808", 
      "https://app.dimensions.ai/details/publication/pub.1025621825"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T18:12", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_359.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1023/a:1021096812808"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1023/a:1021096812808'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1023/a:1021096812808'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1023/a:1021096812808'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1023/a:1021096812808'


 

This table displays all metadata directly associated to this object as RDF triples.

135 TRIPLES      22 PREDICATES      77 URIs      65 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1023/a:1021096812808 schema:about anzsrc-for:09
2 anzsrc-for:0915
3 schema:author N07ffb2871aa247be954846cde03e268f
4 schema:citation sg:pub.10.1007/bf00822461
5 sg:pub.10.1007/bf01160566
6 sg:pub.10.1007/bf02546588
7 sg:pub.10.1557/jmr.1995.2471
8 schema:datePublished 2002-01
9 schema:datePublishedReg 2002-01-01
10 schema:description Volume combustion synthesis in metal–metal systems (i.e., Ni-Al and Cu-Al) was investigated. Both thermocouple and infrared imaging techniques were used to study the temperature–time history of the process. It was found that in both systems, volume combustion starts at a temperature near the melting point of aluminum. For the Cu-Al mixture, the reaction essentially occurs uniformly along the sample body; whereas, for Ni-Al, propagation of a rapid reaction wave is typically observed. The characteristic temperature gradient of this wave is more than an order of magnitude lower and the velocity of propagation is even higher, as compared with a conventional combustion wave. An explanation of the observed results based on a new class of wave, the so-called virtual combustion wave, is given.
11 schema:genre article
12 schema:inLanguage en
13 schema:isAccessibleForFree false
14 schema:isPartOf N15e4f2b0d4d940388bb869bdd3d7745a
15 N912a18c4bea6450c975bb3f1b28ca52d
16 sg:journal.1143463
17 schema:keywords Cu–Al mixtures
18 Ni-Al
19 Volume Combustion Modes
20 aluminum
21 body
22 characteristic temperature gradient
23 class
24 combustion
25 combustion mode
26 combustion synthesis
27 combustion wave
28 conventional combustion wave
29 explanation
30 gradient
31 heterogeneous reaction systems
32 history
33 magnitude
34 melting point
35 metal-metal systems
36 mixture
37 mode
38 new class
39 observed results
40 order
41 orders of magnitude
42 point
43 process
44 propagation
45 rapid reaction wave
46 reaction
47 reaction system
48 reaction wave
49 results
50 sample body
51 synthesis
52 system
53 technique
54 temperature
55 temperature gradient
56 temperature-time history
57 thermocouples
58 velocity
59 velocity of propagation
60 virtual combustion wave
61 volume combustion
62 volume combustion synthesis
63 waves
64 schema:name Volume Combustion Modes in Heterogeneous Reaction Systems
65 schema:pagination 31-36
66 schema:productId N702e44921466486da487217e1e63316a
67 Nbc775df1468942569804044991ec71e6
68 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025621825
69 https://doi.org/10.1023/a:1021096812808
70 schema:sdDatePublished 2022-01-01T18:12
71 schema:sdLicense https://scigraph.springernature.com/explorer/license/
72 schema:sdPublisher Ne3d6ef75f55f4bc2b7d15d6442be91b1
73 schema:url https://doi.org/10.1023/a:1021096812808
74 sgo:license sg:explorer/license/
75 sgo:sdDataset articles
76 rdf:type schema:ScholarlyArticle
77 N07ffb2871aa247be954846cde03e268f rdf:first sg:person.016007751364.34
78 rdf:rest N8174d701340d4d80b98e11c113eada29
79 N15e4f2b0d4d940388bb869bdd3d7745a schema:volumeNumber 10
80 rdf:type schema:PublicationVolume
81 N4a142dfcc969436288da813a1f3f12c3 rdf:first sg:person.015311351425.35
82 rdf:rest rdf:nil
83 N702e44921466486da487217e1e63316a schema:name dimensions_id
84 schema:value pub.1025621825
85 rdf:type schema:PropertyValue
86 N8174d701340d4d80b98e11c113eada29 rdf:first sg:person.01252146121.40
87 rdf:rest N4a142dfcc969436288da813a1f3f12c3
88 N912a18c4bea6450c975bb3f1b28ca52d schema:issueNumber 1
89 rdf:type schema:PublicationIssue
90 Nbc775df1468942569804044991ec71e6 schema:name doi
91 schema:value 10.1023/a:1021096812808
92 rdf:type schema:PropertyValue
93 Ne3d6ef75f55f4bc2b7d15d6442be91b1 schema:name Springer Nature - SN SciGraph project
94 rdf:type schema:Organization
95 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
96 schema:name Engineering
97 rdf:type schema:DefinedTerm
98 anzsrc-for:0915 schema:inDefinedTermSet anzsrc-for:
99 schema:name Interdisciplinary Engineering
100 rdf:type schema:DefinedTerm
101 sg:journal.1143463 schema:issn 1064-7562
102 1573-4870
103 schema:name Journal of Materials Synthesis and Processing
104 schema:publisher Springer Nature
105 rdf:type schema:Periodical
106 sg:person.01252146121.40 schema:affiliation grid-institutes:grid.131063.6
107 schema:familyName Mukasyan
108 schema:givenName A. S.
109 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01252146121.40
110 rdf:type schema:Person
111 sg:person.015311351425.35 schema:affiliation grid-institutes:grid.131063.6
112 schema:familyName Varma
113 schema:givenName A.
114 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015311351425.35
115 rdf:type schema:Person
116 sg:person.016007751364.34 schema:affiliation grid-institutes:grid.131063.6
117 schema:familyName Rogachev
118 schema:givenName A. S.
119 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016007751364.34
120 rdf:type schema:Person
121 sg:pub.10.1007/bf00822461 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042283245
122 https://doi.org/10.1007/bf00822461
123 rdf:type schema:CreativeWork
124 sg:pub.10.1007/bf01160566 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052089103
125 https://doi.org/10.1007/bf01160566
126 rdf:type schema:CreativeWork
127 sg:pub.10.1007/bf02546588 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041994750
128 https://doi.org/10.1007/bf02546588
129 rdf:type schema:CreativeWork
130 sg:pub.10.1557/jmr.1995.2471 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031808971
131 https://doi.org/10.1557/jmr.1995.2471
132 rdf:type schema:CreativeWork
133 grid-institutes:grid.131063.6 schema:alternateName Department of Chemical Engineering and Center for Molecularly Engineered Materials, University of Notre Dame, 46556, Notre Dame, Indiana
134 schema:name Department of Chemical Engineering and Center for Molecularly Engineered Materials, University of Notre Dame, 46556, Notre Dame, Indiana
135 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...