Probing the Vorticity in a Superconductor Rapidly Quenched from the Normal State View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2002-10

AUTHORS

F. Boyer, F. Chibane, J.-P. Maneval

ABSTRACT

Topological defects such as vortices subsist for some time in a rapidly frozen superconducting film (W. H. Zurek, Phys. Rep.276, 177, 1996). We propose to use as a probe of the vortex density the finite delay Td, which, in narrow strips, exists between a current step and the voltage response. Technically, this amounts to driving a bridge into the localized hot-spot regime by means of a pump pulse (laser or electrical). Cooling of such films as epitaxial YBCO-on-MgO, or niobium-on-sapphire, requires only a few nanoseconds at low T. A time Δt later, a probe pulse is applied to measure Td. The dependence Δt → Td is interpreted as a witness of the fossil vorticity, long after quenching into the zero-resistance regime. More... »

PAGES

421-424

Identifiers

URI

http://scigraph.springernature.com/pub.10.1023/a:1021046903178

DOI

http://dx.doi.org/10.1023/a:1021046903178

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1027489355


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "Laboratoire de Physique LPMC (CNRS), Ecole Normale, 24 rue Lhomond, 75231, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Boyer", 
        "givenName": "F.", 
        "id": "sg:person.012310551012.94", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012310551012.94"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Universit\u00e9 Ibn Zohr", 
          "id": "https://www.grid.ac/institutes/grid.417651.0", 
          "name": [
            "Laboratoire de Physique LPMC (CNRS), Ecole Normale, 24 rue Lhomond, 75231, Paris, France", 
            "Facult\u00e9 des Sciences, Universit\u00e9 d'Agadir, Agadir, Maroc"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chibane", 
        "givenName": "F.", 
        "id": "sg:person.015063174543.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015063174543.05"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Paris Diderot University", 
          "id": "https://www.grid.ac/institutes/grid.7452.4", 
          "name": [
            "Laboratoire de Physique LPMC (CNRS), Ecole Normale, 24 rue Lhomond, 75231, Paris, France", 
            "Universit\u00e9 Paris 7, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Maneval", 
        "givenName": "J.-P.", 
        "id": "sg:person.010536505665.64", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010536505665.64"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/382334a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003825111", 
          "https://doi.org/10.1038/382334a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0953-2048/13/8/319", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022291086"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0370-1573(80)90091-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025959719"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0370-1573(80)90091-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025959719"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.81.3703", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040459068"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.81.3703", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040459068"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1007892825488", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042011447", 
          "https://doi.org/10.1023/a:1007892825488"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.60.7595", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043837828"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.60.7595", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043837828"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0370-1573(96)00009-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048881804"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.81.1933", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060818018"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.81.1933", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060818018"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2002-10", 
    "datePublishedReg": "2002-10-01", 
    "description": "Topological defects such as vortices subsist for some time in a rapidly frozen superconducting film (W. H. Zurek, Phys. Rep.276, 177, 1996). We propose to use as a probe of the vortex density the finite delay Td, which, in narrow strips, exists between a current step and the voltage response. Technically, this amounts to driving a bridge into the localized hot-spot regime by means of a pump pulse (laser or electrical). Cooling of such films as epitaxial YBCO-on-MgO, or niobium-on-sapphire, requires only a few nanoseconds at low T. A time \u0394t later, a probe pulse is applied to measure Td. The dependence \u0394t \u2192 Td is interpreted as a witness of the fossil vorticity, long after quenching into the zero-resistance regime.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1023/a:1021046903178", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1137849", 
        "issn": [
          "0896-1107", 
          "1572-9605"
        ], 
        "name": "Journal of Superconductivity", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "15"
      }
    ], 
    "name": "Probing the Vorticity in a Superconductor Rapidly Quenched from the Normal State", 
    "pagination": "421-424", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "82f345d0ec67ab33b39aca7786d1d49247b950be2c337e7d7462ee11c95cd276"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1023/a:1021046903178"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1027489355"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1023/a:1021046903178", 
      "https://app.dimensions.ai/details/publication/pub.1027489355"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T14:08", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8660_00000505.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1023%2FA%3A1021046903178"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1023/a:1021046903178'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1023/a:1021046903178'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1023/a:1021046903178'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1023/a:1021046903178'


 

This table displays all metadata directly associated to this object as RDF triples.

108 TRIPLES      21 PREDICATES      35 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1023/a:1021046903178 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author N5ad7f4cc6241411a9b62afae7ebfc161
4 schema:citation sg:pub.10.1023/a:1007892825488
5 sg:pub.10.1038/382334a0
6 https://doi.org/10.1016/0370-1573(80)90091-5
7 https://doi.org/10.1016/s0370-1573(96)00009-9
8 https://doi.org/10.1088/0953-2048/13/8/319
9 https://doi.org/10.1103/physrevb.60.7595
10 https://doi.org/10.1103/physrevlett.81.1933
11 https://doi.org/10.1103/physrevlett.81.3703
12 schema:datePublished 2002-10
13 schema:datePublishedReg 2002-10-01
14 schema:description Topological defects such as vortices subsist for some time in a rapidly frozen superconducting film (W. H. Zurek, Phys. Rep.276, 177, 1996). We propose to use as a probe of the vortex density the finite delay Td, which, in narrow strips, exists between a current step and the voltage response. Technically, this amounts to driving a bridge into the localized hot-spot regime by means of a pump pulse (laser or electrical). Cooling of such films as epitaxial YBCO-on-MgO, or niobium-on-sapphire, requires only a few nanoseconds at low T. A time Δt later, a probe pulse is applied to measure Td. The dependence Δt → Td is interpreted as a witness of the fossil vorticity, long after quenching into the zero-resistance regime.
15 schema:genre research_article
16 schema:inLanguage en
17 schema:isAccessibleForFree false
18 schema:isPartOf N773237c478e241d1996b419024a8c8a2
19 N9a559ebd73f44b35bd9b4e8c393ab84b
20 sg:journal.1137849
21 schema:name Probing the Vorticity in a Superconductor Rapidly Quenched from the Normal State
22 schema:pagination 421-424
23 schema:productId N1906936aa11e4c9d855a492d582f2588
24 N20fb6028fd96448d9e23b8a6f641f1d4
25 N737397990a934ac3ad044397fb5d4a1a
26 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027489355
27 https://doi.org/10.1023/a:1021046903178
28 schema:sdDatePublished 2019-04-10T14:08
29 schema:sdLicense https://scigraph.springernature.com/explorer/license/
30 schema:sdPublisher N2083a1ab91244b31abaca81c101748a7
31 schema:url http://link.springer.com/10.1023%2FA%3A1021046903178
32 sgo:license sg:explorer/license/
33 sgo:sdDataset articles
34 rdf:type schema:ScholarlyArticle
35 N1906936aa11e4c9d855a492d582f2588 schema:name dimensions_id
36 schema:value pub.1027489355
37 rdf:type schema:PropertyValue
38 N2083a1ab91244b31abaca81c101748a7 schema:name Springer Nature - SN SciGraph project
39 rdf:type schema:Organization
40 N20fb6028fd96448d9e23b8a6f641f1d4 schema:name doi
41 schema:value 10.1023/a:1021046903178
42 rdf:type schema:PropertyValue
43 N2abc40b1bf004d6cba35434c3667af5a schema:name Laboratoire de Physique LPMC (CNRS), Ecole Normale, 24 rue Lhomond, 75231, Paris, France
44 rdf:type schema:Organization
45 N5ad7f4cc6241411a9b62afae7ebfc161 rdf:first sg:person.012310551012.94
46 rdf:rest Ne83608c8f62d4a998ac231162d2c2cd2
47 N737397990a934ac3ad044397fb5d4a1a schema:name readcube_id
48 schema:value 82f345d0ec67ab33b39aca7786d1d49247b950be2c337e7d7462ee11c95cd276
49 rdf:type schema:PropertyValue
50 N773237c478e241d1996b419024a8c8a2 schema:volumeNumber 15
51 rdf:type schema:PublicationVolume
52 N9a559ebd73f44b35bd9b4e8c393ab84b schema:issueNumber 5
53 rdf:type schema:PublicationIssue
54 Nc35e32c2c11b4a68870573a21c94697f rdf:first sg:person.010536505665.64
55 rdf:rest rdf:nil
56 Ne83608c8f62d4a998ac231162d2c2cd2 rdf:first sg:person.015063174543.05
57 rdf:rest Nc35e32c2c11b4a68870573a21c94697f
58 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
59 schema:name Engineering
60 rdf:type schema:DefinedTerm
61 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
62 schema:name Materials Engineering
63 rdf:type schema:DefinedTerm
64 sg:journal.1137849 schema:issn 0896-1107
65 1572-9605
66 schema:name Journal of Superconductivity
67 rdf:type schema:Periodical
68 sg:person.010536505665.64 schema:affiliation https://www.grid.ac/institutes/grid.7452.4
69 schema:familyName Maneval
70 schema:givenName J.-P.
71 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010536505665.64
72 rdf:type schema:Person
73 sg:person.012310551012.94 schema:affiliation N2abc40b1bf004d6cba35434c3667af5a
74 schema:familyName Boyer
75 schema:givenName F.
76 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012310551012.94
77 rdf:type schema:Person
78 sg:person.015063174543.05 schema:affiliation https://www.grid.ac/institutes/grid.417651.0
79 schema:familyName Chibane
80 schema:givenName F.
81 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015063174543.05
82 rdf:type schema:Person
83 sg:pub.10.1023/a:1007892825488 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042011447
84 https://doi.org/10.1023/a:1007892825488
85 rdf:type schema:CreativeWork
86 sg:pub.10.1038/382334a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003825111
87 https://doi.org/10.1038/382334a0
88 rdf:type schema:CreativeWork
89 https://doi.org/10.1016/0370-1573(80)90091-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025959719
90 rdf:type schema:CreativeWork
91 https://doi.org/10.1016/s0370-1573(96)00009-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048881804
92 rdf:type schema:CreativeWork
93 https://doi.org/10.1088/0953-2048/13/8/319 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022291086
94 rdf:type schema:CreativeWork
95 https://doi.org/10.1103/physrevb.60.7595 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043837828
96 rdf:type schema:CreativeWork
97 https://doi.org/10.1103/physrevlett.81.1933 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060818018
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1103/physrevlett.81.3703 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040459068
100 rdf:type schema:CreativeWork
101 https://www.grid.ac/institutes/grid.417651.0 schema:alternateName Université Ibn Zohr
102 schema:name Faculté des Sciences, Université d'Agadir, Agadir, Maroc
103 Laboratoire de Physique LPMC (CNRS), Ecole Normale, 24 rue Lhomond, 75231, Paris, France
104 rdf:type schema:Organization
105 https://www.grid.ac/institutes/grid.7452.4 schema:alternateName Paris Diderot University
106 schema:name Laboratoire de Physique LPMC (CNRS), Ecole Normale, 24 rue Lhomond, 75231, Paris, France
107 Université Paris 7, Paris, France
108 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...