Local Intersection Cohomology of Baily–Borel Compactifications View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2002-12

AUTHORS

M. Goresky, G. Harder, R. MacPherson, A. Nair

ABSTRACT

The local intersection cohomology of a point in the Baily–Borel compactification (of a Hermitian locally symmetric space) is shown to be canonically isomorphic to the weighted cohomology of a certain linear locally symmetric space (an arithmetic quotient of the associated self-adjoint homogeneous cone). Explicit computations are given for the symplectic group in four variables. More... »

PAGES

243-268

References to SciGraph publications

  • 1983-12. Satake compactifications in COMMENTARII MATHEMATICI HELVETICI
  • 1982-06. L2 cohomology of warped products and arithmetic groups in INVENTIONES MATHEMATICAE
  • 1993-12. On thel-adic cohomology of Siegel threefolds in INVENTIONES MATHEMATICAE
  • 1994-12. Weighted cohomology in INVENTIONES MATHEMATICAE
  • 1994-12. Lefschetz formulae for arithmetic varieties in INVENTIONES MATHEMATICAE
  • 1973-12. Corners and arithmetic groups in COMMENTARII MATHEMATICI HELVETICI
  • 1997-02. Sur la cohomologie à supports compacts des variétés de Shimura pour GSp(4) in COMPOSITIO MATHEMATICA
  • 1993-12. Local contribution to the Lefschetz fixed point formula in INVENTIONES MATHEMATICAE
  • 1992-03. On ℓ-adic sheaves on Shimura varieties and their higher direct images in the Baily-Borel compactification in MATHEMATISCHE ANNALEN
  • 1987. A vanishing theorem in relative Lie algebra cohomology in ALGEBRAIC GROUPS UTRECHT 1986
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1023/a:1020995202727

    DOI

    http://dx.doi.org/10.1023/a:1020995202727

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1015198686


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Institute for Advanced Study, School of Mathematics, 1 Einstein Drive, 08540, Princeton, NJ, U.S.A", 
              "id": "http://www.grid.ac/institutes/grid.78989.37", 
              "name": [
                "Institute for Advanced Study, School of Mathematics, 1 Einstein Drive, 08540, Princeton, NJ, U.S.A"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Goresky", 
            "givenName": "M.", 
            "id": "sg:person.015345565663.24", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015345565663.24"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Mathematisches Institut der Universit\u00e4t Bonn, Beringstr asse 1, Zimmer 15, 53115, Bonn, Germany", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Mathematisches Institut der Universit\u00e4t Bonn, Beringstr asse 1, Zimmer 15, 53115, Bonn, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Harder", 
            "givenName": "G.", 
            "id": "sg:person.07760346052.42", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07760346052.42"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute for Advanced Study, School of Mathematics, 1 Einstein Drive, 08540, Princeton, NJ, U.S.A", 
              "id": "http://www.grid.ac/institutes/grid.78989.37", 
              "name": [
                "Institute for Advanced Study, School of Mathematics, 1 Einstein Drive, 08540, Princeton, NJ, U.S.A"
              ], 
              "type": "Organization"
            }, 
            "familyName": "MacPherson", 
            "givenName": "R.", 
            "id": "sg:person.016143146263.78", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016143146263.78"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Tata Institute of Fundamental Research, School of Mathematics, Homi Bhabha Road, Mumbai, 400 005, Bombay, India", 
              "id": "http://www.grid.ac/institutes/grid.22401.35", 
              "name": [
                "Tata Institute of Fundamental Research, School of Mathematics, Homi Bhabha Road, Mumbai, 400 005, Bombay, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Nair", 
            "givenName": "A.", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1023/a:1000102414055", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1056301096", 
              "https://doi.org/10.1023/a:1000102414055"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bfb0079230", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042005073", 
              "https://doi.org/10.1007/bfb0079230"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01231760", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016801167", 
              "https://doi.org/10.1007/bf01231760"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01390727", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052426458", 
              "https://doi.org/10.1007/bf01390727"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02566134", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000363186", 
              "https://doi.org/10.1007/bf02566134"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01231277", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018783002", 
              "https://doi.org/10.1007/bf01231277"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01231560", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024479880", 
              "https://doi.org/10.1007/bf01231560"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01232672", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036222293", 
              "https://doi.org/10.1007/bf01232672"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02564638", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020538158", 
              "https://doi.org/10.1007/bf02564638"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01444618", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045364713", 
              "https://doi.org/10.1007/bf01444618"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2002-12", 
        "datePublishedReg": "2002-12-01", 
        "description": "The local intersection cohomology of a point in the Baily\u2013Borel compactification (of a Hermitian locally symmetric space) is shown to be canonically isomorphic to the weighted cohomology of a certain linear locally symmetric space (an arithmetic quotient of the associated self-adjoint homogeneous cone). Explicit computations are given for the symplectic group in four variables.", 
        "genre": "article", 
        "id": "sg:pub.10.1023/a:1020995202727", 
        "inLanguage": "en", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1138208", 
            "issn": [
              "0010-437X", 
              "1570-5846"
            ], 
            "name": "Compositio Mathematica", 
            "publisher": "Cambridge University Press (CUP)", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "3", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "134"
          }
        ], 
        "keywords": [
          "Baily-Borel compactification", 
          "intersection cohomology", 
          "certain linear", 
          "symmetric spaces", 
          "explicit computation", 
          "cohomology", 
          "symplectic group", 
          "compactification", 
          "computation", 
          "linear", 
          "space", 
          "variables", 
          "point", 
          "group", 
          "local intersection cohomology", 
          "weighted cohomology"
        ], 
        "name": "Local Intersection Cohomology of Baily\u2013Borel Compactifications", 
        "pagination": "243-268", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1015198686"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1023/a:1020995202727"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1023/a:1020995202727", 
          "https://app.dimensions.ai/details/publication/pub.1015198686"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2021-12-01T19:14", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_356.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1023/a:1020995202727"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1023/a:1020995202727'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1023/a:1020995202727'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1023/a:1020995202727'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1023/a:1020995202727'


     

    This table displays all metadata directly associated to this object as RDF triples.

    140 TRIPLES      22 PREDICATES      52 URIs      34 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1023/a:1020995202727 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author Ndedcb28bab4244438f9b250b4dc90a17
    4 schema:citation sg:pub.10.1007/bf01231277
    5 sg:pub.10.1007/bf01231560
    6 sg:pub.10.1007/bf01231760
    7 sg:pub.10.1007/bf01232672
    8 sg:pub.10.1007/bf01390727
    9 sg:pub.10.1007/bf01444618
    10 sg:pub.10.1007/bf02564638
    11 sg:pub.10.1007/bf02566134
    12 sg:pub.10.1007/bfb0079230
    13 sg:pub.10.1023/a:1000102414055
    14 schema:datePublished 2002-12
    15 schema:datePublishedReg 2002-12-01
    16 schema:description The local intersection cohomology of a point in the Baily–Borel compactification (of a Hermitian locally symmetric space) is shown to be canonically isomorphic to the weighted cohomology of a certain linear locally symmetric space (an arithmetic quotient of the associated self-adjoint homogeneous cone). Explicit computations are given for the symplectic group in four variables.
    17 schema:genre article
    18 schema:inLanguage en
    19 schema:isAccessibleForFree true
    20 schema:isPartOf N682368df58914732bae9dfe24911f5d4
    21 N7a5aebe9c09b4e8e8c961da6086af539
    22 sg:journal.1138208
    23 schema:keywords Baily-Borel compactification
    24 certain linear
    25 cohomology
    26 compactification
    27 computation
    28 explicit computation
    29 group
    30 intersection cohomology
    31 linear
    32 local intersection cohomology
    33 point
    34 space
    35 symmetric spaces
    36 symplectic group
    37 variables
    38 weighted cohomology
    39 schema:name Local Intersection Cohomology of Baily–Borel Compactifications
    40 schema:pagination 243-268
    41 schema:productId N6525fcd84de340188e3fdddcd131d791
    42 N8647cb56593b489eb59ce6762ca2db10
    43 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015198686
    44 https://doi.org/10.1023/a:1020995202727
    45 schema:sdDatePublished 2021-12-01T19:14
    46 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    47 schema:sdPublisher Nb18c0d27858446d88fe0b463a631c6db
    48 schema:url https://doi.org/10.1023/a:1020995202727
    49 sgo:license sg:explorer/license/
    50 sgo:sdDataset articles
    51 rdf:type schema:ScholarlyArticle
    52 N293b51585650402fb9ec3e90d0dca123 rdf:first sg:person.07760346052.42
    53 rdf:rest N3f93e6217a324330936fd351b8bd980d
    54 N3f93e6217a324330936fd351b8bd980d rdf:first sg:person.016143146263.78
    55 rdf:rest Nd158fca4335e4eaaa93c9fb0ae45c667
    56 N6525fcd84de340188e3fdddcd131d791 schema:name doi
    57 schema:value 10.1023/a:1020995202727
    58 rdf:type schema:PropertyValue
    59 N682368df58914732bae9dfe24911f5d4 schema:issueNumber 3
    60 rdf:type schema:PublicationIssue
    61 N7a5aebe9c09b4e8e8c961da6086af539 schema:volumeNumber 134
    62 rdf:type schema:PublicationVolume
    63 N8647cb56593b489eb59ce6762ca2db10 schema:name dimensions_id
    64 schema:value pub.1015198686
    65 rdf:type schema:PropertyValue
    66 Nb18c0d27858446d88fe0b463a631c6db schema:name Springer Nature - SN SciGraph project
    67 rdf:type schema:Organization
    68 Nd158fca4335e4eaaa93c9fb0ae45c667 rdf:first Nd8e53a11a02f41b39ce6351f03c94a85
    69 rdf:rest rdf:nil
    70 Nd8e53a11a02f41b39ce6351f03c94a85 schema:affiliation grid-institutes:grid.22401.35
    71 schema:familyName Nair
    72 schema:givenName A.
    73 rdf:type schema:Person
    74 Ndedcb28bab4244438f9b250b4dc90a17 rdf:first sg:person.015345565663.24
    75 rdf:rest N293b51585650402fb9ec3e90d0dca123
    76 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    77 schema:name Mathematical Sciences
    78 rdf:type schema:DefinedTerm
    79 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    80 schema:name Pure Mathematics
    81 rdf:type schema:DefinedTerm
    82 sg:journal.1138208 schema:issn 0010-437X
    83 1570-5846
    84 schema:name Compositio Mathematica
    85 schema:publisher Cambridge University Press (CUP)
    86 rdf:type schema:Periodical
    87 sg:person.015345565663.24 schema:affiliation grid-institutes:grid.78989.37
    88 schema:familyName Goresky
    89 schema:givenName M.
    90 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015345565663.24
    91 rdf:type schema:Person
    92 sg:person.016143146263.78 schema:affiliation grid-institutes:grid.78989.37
    93 schema:familyName MacPherson
    94 schema:givenName R.
    95 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016143146263.78
    96 rdf:type schema:Person
    97 sg:person.07760346052.42 schema:affiliation grid-institutes:None
    98 schema:familyName Harder
    99 schema:givenName G.
    100 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07760346052.42
    101 rdf:type schema:Person
    102 sg:pub.10.1007/bf01231277 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018783002
    103 https://doi.org/10.1007/bf01231277
    104 rdf:type schema:CreativeWork
    105 sg:pub.10.1007/bf01231560 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024479880
    106 https://doi.org/10.1007/bf01231560
    107 rdf:type schema:CreativeWork
    108 sg:pub.10.1007/bf01231760 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016801167
    109 https://doi.org/10.1007/bf01231760
    110 rdf:type schema:CreativeWork
    111 sg:pub.10.1007/bf01232672 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036222293
    112 https://doi.org/10.1007/bf01232672
    113 rdf:type schema:CreativeWork
    114 sg:pub.10.1007/bf01390727 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052426458
    115 https://doi.org/10.1007/bf01390727
    116 rdf:type schema:CreativeWork
    117 sg:pub.10.1007/bf01444618 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045364713
    118 https://doi.org/10.1007/bf01444618
    119 rdf:type schema:CreativeWork
    120 sg:pub.10.1007/bf02564638 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020538158
    121 https://doi.org/10.1007/bf02564638
    122 rdf:type schema:CreativeWork
    123 sg:pub.10.1007/bf02566134 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000363186
    124 https://doi.org/10.1007/bf02566134
    125 rdf:type schema:CreativeWork
    126 sg:pub.10.1007/bfb0079230 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042005073
    127 https://doi.org/10.1007/bfb0079230
    128 rdf:type schema:CreativeWork
    129 sg:pub.10.1023/a:1000102414055 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056301096
    130 https://doi.org/10.1023/a:1000102414055
    131 rdf:type schema:CreativeWork
    132 grid-institutes:None schema:alternateName Mathematisches Institut der Universität Bonn, Beringstr asse 1, Zimmer 15, 53115, Bonn, Germany
    133 schema:name Mathematisches Institut der Universität Bonn, Beringstr asse 1, Zimmer 15, 53115, Bonn, Germany
    134 rdf:type schema:Organization
    135 grid-institutes:grid.22401.35 schema:alternateName Tata Institute of Fundamental Research, School of Mathematics, Homi Bhabha Road, Mumbai, 400 005, Bombay, India
    136 schema:name Tata Institute of Fundamental Research, School of Mathematics, Homi Bhabha Road, Mumbai, 400 005, Bombay, India
    137 rdf:type schema:Organization
    138 grid-institutes:grid.78989.37 schema:alternateName Institute for Advanced Study, School of Mathematics, 1 Einstein Drive, 08540, Princeton, NJ, U.S.A
    139 schema:name Institute for Advanced Study, School of Mathematics, 1 Einstein Drive, 08540, Princeton, NJ, U.S.A
    140 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...