Ontology type: schema:ScholarlyArticle
2002-09
AUTHORS ABSTRACTWe study automorphism groups of two important predicates in computability theory: the predicate χ ∈ Wy and the graph of a universal partially computable function. It is shown that all automorphisms of the predicates in question are computable. The actions of the automorphism groups on some index sets are examined, and we establish a number of results on the structure of these. We also look into homomorphisms of the two predicates. In this case the situation changes: all homomorphisms of the universal function are computable, but in each Turing degree, homomorphisms of χ ∈ Wy exist. More... »
PAGES285-294
http://scigraph.springernature.com/pub.10.1023/a:1020975619422
DOIhttp://dx.doi.org/10.1023/a:1020975619422
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1037118106
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Pure Mathematics",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Mathematical Sciences",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "University of Oviedo",
"id": "https://www.grid.ac/institutes/grid.10863.3c",
"name": [
"Departamento de Informatica, Universidad de Oviedo, Campus de Viesques, 33271, Gijon, Espa\u00f1a"
],
"type": "Organization"
},
"familyName": "Combarro",
"givenName": "E. F.",
"id": "sg:person.014120426453.50",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014120426453.50"
],
"type": "Person"
}
],
"citation": [
{
"id": "https://doi.org/10.2307/2271984",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1015294704"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/s0049-237x(08)71114-5",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1023547497"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bfb0079688",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1040753067",
"https://doi.org/10.1007/bfb0079688"
],
"type": "CreativeWork"
}
],
"datePublished": "2002-09",
"datePublishedReg": "2002-09-01",
"description": "We study automorphism groups of two important predicates in computability theory: the predicate \u03c7 \u2208 Wy and the graph of a universal partially computable function. It is shown that all automorphisms of the predicates in question are computable. The actions of the automorphism groups on some index sets are examined, and we establish a number of results on the structure of these. We also look into homomorphisms of the two predicates. In this case the situation changes: all homomorphisms of the universal function are computable, but in each Turing degree, homomorphisms of \u03c7 \u2208 Wy exist.",
"genre": "research_article",
"id": "sg:pub.10.1023/a:1020975619422",
"inLanguage": [
"en"
],
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1136408",
"issn": [
"0002-5232",
"1573-8302"
],
"name": "Algebra and Logic",
"type": "Periodical"
},
{
"issueNumber": "5",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "41"
}
],
"name": "Automorphism Groups of Computably Enumerable Predicates",
"pagination": "285-294",
"productId": [
{
"name": "readcube_id",
"type": "PropertyValue",
"value": [
"b0d187bdf91328908e746a994bf008a2cc84521403b00e65d68eefb9263ade2b"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1023/a:1020975619422"
]
},
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1037118106"
]
}
],
"sameAs": [
"https://doi.org/10.1023/a:1020975619422",
"https://app.dimensions.ai/details/publication/pub.1037118106"
],
"sdDataset": "articles",
"sdDatePublished": "2019-04-10T19:56",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8681_00000506.jsonl",
"type": "ScholarlyArticle",
"url": "http://link.springer.com/10.1023%2FA%3A1020975619422"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1023/a:1020975619422'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1023/a:1020975619422'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1023/a:1020975619422'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1023/a:1020975619422'
This table displays all metadata directly associated to this object as RDF triples.
71 TRIPLES
21 PREDICATES
30 URIs
19 LITERALS
7 BLANK NODES