Automorphism Groups of Computably Enumerable Predicates View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2002-09

AUTHORS

E. F. Combarro

ABSTRACT

We study automorphism groups of two important predicates in computability theory: the predicate χ ∈ Wy and the graph of a universal partially computable function. It is shown that all automorphisms of the predicates in question are computable. The actions of the automorphism groups on some index sets are examined, and we establish a number of results on the structure of these. We also look into homomorphisms of the two predicates. In this case the situation changes: all homomorphisms of the universal function are computable, but in each Turing degree, homomorphisms of χ ∈ Wy exist. More... »

PAGES

285-294

References to SciGraph publications

  • 1968. Definability, automorphisms, and infinitary languages in THE SYNTAX AND SEMANTICS OF INFINITARY LANGUAGES
  • Journal

    TITLE

    Algebra and Logic

    ISSUE

    5

    VOLUME

    41

    Author Affiliations

    Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1023/a:1020975619422

    DOI

    http://dx.doi.org/10.1023/a:1020975619422

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1037118106


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "University of Oviedo", 
              "id": "https://www.grid.ac/institutes/grid.10863.3c", 
              "name": [
                "Departamento de Informatica, Universidad de Oviedo, Campus de Viesques, 33271, Gijon, Espa\u00f1a"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Combarro", 
            "givenName": "E. F.", 
            "id": "sg:person.014120426453.50", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014120426453.50"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.2307/2271984", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015294704"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0049-237x(08)71114-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023547497"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bfb0079688", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040753067", 
              "https://doi.org/10.1007/bfb0079688"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2002-09", 
        "datePublishedReg": "2002-09-01", 
        "description": "We study automorphism groups of two important predicates in computability theory: the predicate \u03c7 \u2208 Wy and the graph of a universal partially computable function. It is shown that all automorphisms of the predicates in question are computable. The actions of the automorphism groups on some index sets are examined, and we establish a number of results on the structure of these. We also look into homomorphisms of the two predicates. In this case the situation changes: all homomorphisms of the universal function are computable, but in each Turing degree, homomorphisms of \u03c7 \u2208 Wy exist.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1023/a:1020975619422", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1136408", 
            "issn": [
              "0002-5232", 
              "1573-8302"
            ], 
            "name": "Algebra and Logic", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "5", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "41"
          }
        ], 
        "name": "Automorphism Groups of Computably Enumerable Predicates", 
        "pagination": "285-294", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "b0d187bdf91328908e746a994bf008a2cc84521403b00e65d68eefb9263ade2b"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1023/a:1020975619422"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1037118106"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1023/a:1020975619422", 
          "https://app.dimensions.ai/details/publication/pub.1037118106"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T19:56", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8681_00000506.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1023%2FA%3A1020975619422"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1023/a:1020975619422'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1023/a:1020975619422'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1023/a:1020975619422'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1023/a:1020975619422'


     

    This table displays all metadata directly associated to this object as RDF triples.

    71 TRIPLES      21 PREDICATES      30 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1023/a:1020975619422 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author N75435bee272045b0ad37ab23344af333
    4 schema:citation sg:pub.10.1007/bfb0079688
    5 https://doi.org/10.1016/s0049-237x(08)71114-5
    6 https://doi.org/10.2307/2271984
    7 schema:datePublished 2002-09
    8 schema:datePublishedReg 2002-09-01
    9 schema:description We study automorphism groups of two important predicates in computability theory: the predicate χ ∈ Wy and the graph of a universal partially computable function. It is shown that all automorphisms of the predicates in question are computable. The actions of the automorphism groups on some index sets are examined, and we establish a number of results on the structure of these. We also look into homomorphisms of the two predicates. In this case the situation changes: all homomorphisms of the universal function are computable, but in each Turing degree, homomorphisms of χ ∈ Wy exist.
    10 schema:genre research_article
    11 schema:inLanguage en
    12 schema:isAccessibleForFree false
    13 schema:isPartOf N2fad06a368e14493a127afd246d46c01
    14 Na9a12392fb4f43b69269c1568483acb8
    15 sg:journal.1136408
    16 schema:name Automorphism Groups of Computably Enumerable Predicates
    17 schema:pagination 285-294
    18 schema:productId N1f7e8bf78bca4110bf8cf85b4fbed263
    19 N755db41708104cb4920f32c5716cf4a5
    20 Nf0888320415c4dd1b93e5da6e508f672
    21 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037118106
    22 https://doi.org/10.1023/a:1020975619422
    23 schema:sdDatePublished 2019-04-10T19:56
    24 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    25 schema:sdPublisher Ne83a9cd6f45c49f4aebfbbcb35177e6c
    26 schema:url http://link.springer.com/10.1023%2FA%3A1020975619422
    27 sgo:license sg:explorer/license/
    28 sgo:sdDataset articles
    29 rdf:type schema:ScholarlyArticle
    30 N1f7e8bf78bca4110bf8cf85b4fbed263 schema:name dimensions_id
    31 schema:value pub.1037118106
    32 rdf:type schema:PropertyValue
    33 N2fad06a368e14493a127afd246d46c01 schema:volumeNumber 41
    34 rdf:type schema:PublicationVolume
    35 N75435bee272045b0ad37ab23344af333 rdf:first sg:person.014120426453.50
    36 rdf:rest rdf:nil
    37 N755db41708104cb4920f32c5716cf4a5 schema:name readcube_id
    38 schema:value b0d187bdf91328908e746a994bf008a2cc84521403b00e65d68eefb9263ade2b
    39 rdf:type schema:PropertyValue
    40 Na9a12392fb4f43b69269c1568483acb8 schema:issueNumber 5
    41 rdf:type schema:PublicationIssue
    42 Ne83a9cd6f45c49f4aebfbbcb35177e6c schema:name Springer Nature - SN SciGraph project
    43 rdf:type schema:Organization
    44 Nf0888320415c4dd1b93e5da6e508f672 schema:name doi
    45 schema:value 10.1023/a:1020975619422
    46 rdf:type schema:PropertyValue
    47 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    48 schema:name Mathematical Sciences
    49 rdf:type schema:DefinedTerm
    50 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    51 schema:name Pure Mathematics
    52 rdf:type schema:DefinedTerm
    53 sg:journal.1136408 schema:issn 0002-5232
    54 1573-8302
    55 schema:name Algebra and Logic
    56 rdf:type schema:Periodical
    57 sg:person.014120426453.50 schema:affiliation https://www.grid.ac/institutes/grid.10863.3c
    58 schema:familyName Combarro
    59 schema:givenName E. F.
    60 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014120426453.50
    61 rdf:type schema:Person
    62 sg:pub.10.1007/bfb0079688 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040753067
    63 https://doi.org/10.1007/bfb0079688
    64 rdf:type schema:CreativeWork
    65 https://doi.org/10.1016/s0049-237x(08)71114-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023547497
    66 rdf:type schema:CreativeWork
    67 https://doi.org/10.2307/2271984 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015294704
    68 rdf:type schema:CreativeWork
    69 https://www.grid.ac/institutes/grid.10863.3c schema:alternateName University of Oviedo
    70 schema:name Departamento de Informatica, Universidad de Oviedo, Campus de Viesques, 33271, Gijon, España
    71 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...