The Inversion Problem of Phase Travel Time Perturbations in Acoustic Imaging View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2002-09

AUTHORS

Ming-Tsung Sun, Dean-Yi Chou, The Ton Team

ABSTRACT

The three-dimensional distribution of change in phase travel time of an active region below the solar surface can be constructed with the technique of acoustic imaging. The interpretation of the distribution of measured phase travel time perturbation suffers from the finite spatial resolution of the acoustic lenses. In the ray approximation, the phase travel time perturbation measured in acoustic imaging can be expressed as an integral of the product of the relative sound-speed perturbation and a kernel. Forward computations show that the vertical resolution of phase travel time perturbation is poor even in the ray approximation. In this study, we discuss the inversion of phase travel time perturbations to estimate the relative sound-speed perturbation with a regularized least-squares inversion method. The tests with model perturbations of sound speed show that the inversion reasonably recovers the distribution of the model perturbation. We also apply the inversion method to the measured phase travel time perturbation of active region NOAA 7981. More... »

PAGES

5-20

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1023/a:1020909524039

DOI

http://dx.doi.org/10.1023/a:1020909524039

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1020199344


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Chang Gung University", 
          "id": "https://www.grid.ac/institutes/grid.145695.a", 
          "name": [
            "Department of Mechanical Engineering, Chang-Gung University, 33333, Tao-Yuan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sun", 
        "givenName": "Ming-Tsung", 
        "id": "sg:person.016034132166.36", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016034132166.36"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Tsing Hua University", 
          "id": "https://www.grid.ac/institutes/grid.38348.34", 
          "name": [
            "Physics Department, Tsing Hua University, 30043, Hsinchu, Taiwan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chou", 
        "givenName": "Dean-Yi", 
        "id": "sg:person.07546665213.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07546665213.30"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Chang Gung University", 
          "id": "https://www.grid.ac/institutes/grid.145695.a", 
          "name": [
            "Department of Mechanical Engineering, Chang-Gung University, 33333, Tao-Yuan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ton Team", 
        "givenName": "The", 
        "id": "sg:person.012247524410.20", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012247524410.20"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/39822", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006379880", 
          "https://doi.org/10.1038/39822"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/39822", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006379880", 
          "https://doi.org/10.1038/39822"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1005255804602", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016362465", 
          "https://doi.org/10.1023/a:1005255804602"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/362430a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019035899", 
          "https://doi.org/10.1038/362430a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1005251208431", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021612106", 
          "https://doi.org/10.1023/a:1005251208431"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1005238600080", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034874997", 
          "https://doi.org/10.1023/a:1005238600080"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00732806", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044919951", 
          "https://doi.org/10.1007/bf00732806"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00732806", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044919951", 
          "https://doi.org/10.1007/bf00732806"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/305933", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058613455"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/306960", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058614482"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/308655", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058616174"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/311438", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058618917"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2002-09", 
    "datePublishedReg": "2002-09-01", 
    "description": "The three-dimensional distribution of change in phase travel time of an active region below the solar surface can be constructed with the technique of acoustic imaging. The interpretation of the distribution of measured phase travel time perturbation suffers from the finite spatial resolution of the acoustic lenses. In the ray approximation, the phase travel time perturbation measured in acoustic imaging can be expressed as an integral of the product of the relative sound-speed perturbation and a kernel. Forward computations show that the vertical resolution of phase travel time perturbation is poor even in the ray approximation. In this study, we discuss the inversion of phase travel time perturbations to estimate the relative sound-speed perturbation with a regularized least-squares inversion method. The tests with model perturbations of sound speed show that the inversion reasonably recovers the distribution of the model perturbation. We also apply the inversion method to the measured phase travel time perturbation of active region NOAA 7981.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1023/a:1020909524039", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1051932", 
        "issn": [
          "0038-0938", 
          "1573-093X"
        ], 
        "name": "Solar Physics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "209"
      }
    ], 
    "name": "The Inversion Problem of Phase Travel Time Perturbations in Acoustic Imaging", 
    "pagination": "5-20", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "603e2b310d63e573529087fdb91f1f791f02f5376558bcc11a1ea74fec68e983"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1023/a:1020909524039"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1020199344"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1023/a:1020909524039", 
      "https://app.dimensions.ai/details/publication/pub.1020199344"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T16:40", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8669_00000504.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1023%2FA%3A1020909524039"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1023/a:1020909524039'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1023/a:1020909524039'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1023/a:1020909524039'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1023/a:1020909524039'


 

This table displays all metadata directly associated to this object as RDF triples.

114 TRIPLES      21 PREDICATES      37 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1023/a:1020909524039 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N79762b8620c54f21bcc1e9ffea1ea73e
4 schema:citation sg:pub.10.1007/bf00732806
5 sg:pub.10.1023/a:1005238600080
6 sg:pub.10.1023/a:1005251208431
7 sg:pub.10.1023/a:1005255804602
8 sg:pub.10.1038/362430a0
9 sg:pub.10.1038/39822
10 https://doi.org/10.1086/305933
11 https://doi.org/10.1086/306960
12 https://doi.org/10.1086/308655
13 https://doi.org/10.1086/311438
14 schema:datePublished 2002-09
15 schema:datePublishedReg 2002-09-01
16 schema:description The three-dimensional distribution of change in phase travel time of an active region below the solar surface can be constructed with the technique of acoustic imaging. The interpretation of the distribution of measured phase travel time perturbation suffers from the finite spatial resolution of the acoustic lenses. In the ray approximation, the phase travel time perturbation measured in acoustic imaging can be expressed as an integral of the product of the relative sound-speed perturbation and a kernel. Forward computations show that the vertical resolution of phase travel time perturbation is poor even in the ray approximation. In this study, we discuss the inversion of phase travel time perturbations to estimate the relative sound-speed perturbation with a regularized least-squares inversion method. The tests with model perturbations of sound speed show that the inversion reasonably recovers the distribution of the model perturbation. We also apply the inversion method to the measured phase travel time perturbation of active region NOAA 7981.
17 schema:genre research_article
18 schema:inLanguage en
19 schema:isAccessibleForFree false
20 schema:isPartOf N8860634ddc9b443da957a85468a0d195
21 N9f54f827e3ba4666a991176c53f2c72c
22 sg:journal.1051932
23 schema:name The Inversion Problem of Phase Travel Time Perturbations in Acoustic Imaging
24 schema:pagination 5-20
25 schema:productId N5425cd61e1f448e08aee5624e23df84d
26 N6f76673ef0a84b1d932861904dcba8b3
27 N7cb9e7559dd845e4bdbb9f8acad96f6d
28 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020199344
29 https://doi.org/10.1023/a:1020909524039
30 schema:sdDatePublished 2019-04-10T16:40
31 schema:sdLicense https://scigraph.springernature.com/explorer/license/
32 schema:sdPublisher Ne5cf6d89c76842f2b6928adec47c1afa
33 schema:url http://link.springer.com/10.1023%2FA%3A1020909524039
34 sgo:license sg:explorer/license/
35 sgo:sdDataset articles
36 rdf:type schema:ScholarlyArticle
37 N5425cd61e1f448e08aee5624e23df84d schema:name dimensions_id
38 schema:value pub.1020199344
39 rdf:type schema:PropertyValue
40 N6f76673ef0a84b1d932861904dcba8b3 schema:name readcube_id
41 schema:value 603e2b310d63e573529087fdb91f1f791f02f5376558bcc11a1ea74fec68e983
42 rdf:type schema:PropertyValue
43 N79762b8620c54f21bcc1e9ffea1ea73e rdf:first sg:person.016034132166.36
44 rdf:rest Na64d4d06ccaf40a596fe22bb4159b577
45 N7cb9e7559dd845e4bdbb9f8acad96f6d schema:name doi
46 schema:value 10.1023/a:1020909524039
47 rdf:type schema:PropertyValue
48 N8860634ddc9b443da957a85468a0d195 schema:volumeNumber 209
49 rdf:type schema:PublicationVolume
50 N9cf5d02a6a9e46059597c1f47e58448d rdf:first sg:person.012247524410.20
51 rdf:rest rdf:nil
52 N9f54f827e3ba4666a991176c53f2c72c schema:issueNumber 1
53 rdf:type schema:PublicationIssue
54 Na64d4d06ccaf40a596fe22bb4159b577 rdf:first sg:person.07546665213.30
55 rdf:rest N9cf5d02a6a9e46059597c1f47e58448d
56 Ne5cf6d89c76842f2b6928adec47c1afa schema:name Springer Nature - SN SciGraph project
57 rdf:type schema:Organization
58 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
59 schema:name Information and Computing Sciences
60 rdf:type schema:DefinedTerm
61 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
62 schema:name Artificial Intelligence and Image Processing
63 rdf:type schema:DefinedTerm
64 sg:journal.1051932 schema:issn 0038-0938
65 1573-093X
66 schema:name Solar Physics
67 rdf:type schema:Periodical
68 sg:person.012247524410.20 schema:affiliation https://www.grid.ac/institutes/grid.145695.a
69 schema:familyName Ton Team
70 schema:givenName The
71 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012247524410.20
72 rdf:type schema:Person
73 sg:person.016034132166.36 schema:affiliation https://www.grid.ac/institutes/grid.145695.a
74 schema:familyName Sun
75 schema:givenName Ming-Tsung
76 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016034132166.36
77 rdf:type schema:Person
78 sg:person.07546665213.30 schema:affiliation https://www.grid.ac/institutes/grid.38348.34
79 schema:familyName Chou
80 schema:givenName Dean-Yi
81 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07546665213.30
82 rdf:type schema:Person
83 sg:pub.10.1007/bf00732806 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044919951
84 https://doi.org/10.1007/bf00732806
85 rdf:type schema:CreativeWork
86 sg:pub.10.1023/a:1005238600080 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034874997
87 https://doi.org/10.1023/a:1005238600080
88 rdf:type schema:CreativeWork
89 sg:pub.10.1023/a:1005251208431 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021612106
90 https://doi.org/10.1023/a:1005251208431
91 rdf:type schema:CreativeWork
92 sg:pub.10.1023/a:1005255804602 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016362465
93 https://doi.org/10.1023/a:1005255804602
94 rdf:type schema:CreativeWork
95 sg:pub.10.1038/362430a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019035899
96 https://doi.org/10.1038/362430a0
97 rdf:type schema:CreativeWork
98 sg:pub.10.1038/39822 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006379880
99 https://doi.org/10.1038/39822
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1086/305933 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058613455
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1086/306960 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058614482
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1086/308655 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058616174
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1086/311438 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058618917
108 rdf:type schema:CreativeWork
109 https://www.grid.ac/institutes/grid.145695.a schema:alternateName Chang Gung University
110 schema:name Department of Mechanical Engineering, Chang-Gung University, 33333, Tao-Yuan
111 rdf:type schema:Organization
112 https://www.grid.ac/institutes/grid.38348.34 schema:alternateName National Tsing Hua University
113 schema:name Physics Department, Tsing Hua University, 30043, Hsinchu, Taiwan
114 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...