Ontology type: schema:ScholarlyArticle
2002-10
AUTHORSN. R. Mann, T. A. Todd, T. J. Tranter, F. Šebesta
ABSTRACTA novel approach to preparing granular sorbents for the separation of actinides has been developed, where the extractant is directly immobilized in an inert matrix. This allows substantially higher extractant loadings in the sorbent than for conventional extraction chromatography resins. This approach utilizes polyacrylonitrile (PAN) as the inert matrix material. The well-known actinide extractant octyl (phenyl)-N,N-diisobutylcarbamoylmethylphosphine oxide (CMPO) has been loaded into sorbent granules at extractant loadings from 20 to 33 wt.% CMPO. The porosity of the PAN matrix allows the active material to have rapid and complete access to the solution containing the impurities, resulting in improved kinetics and higher sorption capacities. Sorbents containing CMPO were prepared using PAN as a binding matrix, and tested against commercially available actinide extraction chromatography resins. Direct comparative batch contact tests performed with TRU-ResinÒ and CMPO-PAN using an INEEL tank waste simulant, resulting in distribution coefficient (Kd) values for Am approximately 2-90 times higher for CMPO-PAN than for TRU-ResinŇ. Batch distribution coefficient (Kd) values for Pu were approximately 60-150 times higher for CMPO-PAN than for the TRU-ResinŇ. Acid dependency curves were generated for Am and Pu with CMPO-PAN over a concentration range of 1 mM to 5M HNO3. More... »
PAGES41-45
http://scigraph.springernature.com/pub.10.1023/a:1020829228253
DOIhttp://dx.doi.org/10.1023/a:1020829228253
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1041676095
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Chemical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0301",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Analytical Chemistry",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Bechtel BWXT Idaho, LLC, P. O. Box 1625, 83415-5218, Idaho Falls, ID, USA",
"id": "http://www.grid.ac/institutes/None",
"name": [
"Bechtel BWXT Idaho, LLC, P. O. Box 1625, 83415-5218, Idaho Falls, ID, USA"
],
"type": "Organization"
},
"familyName": "Mann",
"givenName": "N. R.",
"id": "sg:person.01170366743.50",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01170366743.50"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Bechtel BWXT Idaho, LLC, P. O. Box 1625, 83415-5218, Idaho Falls, ID, USA",
"id": "http://www.grid.ac/institutes/None",
"name": [
"Bechtel BWXT Idaho, LLC, P. O. Box 1625, 83415-5218, Idaho Falls, ID, USA"
],
"type": "Organization"
},
"familyName": "Todd",
"givenName": "T. A.",
"id": "sg:person.07636642363.03",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07636642363.03"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Bechtel BWXT Idaho, LLC, P. O. Box 1625, 83415-5218, Idaho Falls, ID, USA",
"id": "http://www.grid.ac/institutes/None",
"name": [
"Bechtel BWXT Idaho, LLC, P. O. Box 1625, 83415-5218, Idaho Falls, ID, USA"
],
"type": "Organization"
},
"familyName": "Tranter",
"givenName": "T. J.",
"id": "sg:person.014253255031.63",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014253255031.63"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Czech Technical University in Prague, B\u0159ehova 7, CS-115 19, Prague, Czech Republic",
"id": "http://www.grid.ac/institutes/grid.6652.7",
"name": [
"Czech Technical University in Prague, B\u0159ehova 7, CS-115 19, Prague, Czech Republic"
],
"type": "Organization"
},
"familyName": "\u0160ebesta",
"givenName": "F.",
"id": "sg:person.014502716325.78",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014502716325.78"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/bf02039572",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1046311133",
"https://doi.org/10.1007/bf02039572"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf02037360",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1006128068",
"https://doi.org/10.1007/bf02037360"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-94-011-4546-6",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1025701581",
"https://doi.org/10.1007/978-94-011-4546-6"
],
"type": "CreativeWork"
}
],
"datePublished": "2002-10",
"datePublishedReg": "2002-10-01",
"description": "A novel approach to preparing granular sorbents for the separation of actinides has been developed, where the extractant is directly immobilized in an inert matrix. This allows substantially higher extractant loadings in the sorbent than for conventional extraction chromatography resins. This approach utilizes polyacrylonitrile (PAN) as the inert matrix material. The well-known actinide extractant octyl (phenyl)-N,N-diisobutylcarbamoylmethylphosphine oxide (CMPO) has been loaded into sorbent granules at extractant loadings from 20 to 33 wt.% CMPO. The porosity of the PAN matrix allows the active material to have rapid and complete access to the solution containing the impurities, resulting in improved kinetics and higher sorption capacities. Sorbents containing CMPO were prepared using PAN as a binding matrix, and tested against commercially available actinide extraction chromatography resins. Direct comparative batch contact tests performed with TRU-Resin\u00d2 and CMPO-PAN using an INEEL tank waste simulant, resulting in distribution coefficient (Kd) values for Am approximately 2-90 times higher for CMPO-PAN than for TRU-Resin\u0147. Batch distribution coefficient (Kd) values for Pu were approximately 60-150 times higher for CMPO-PAN than for the TRU-Resin\u0147. Acid dependency curves were generated for Am and Pu with CMPO-PAN over a concentration range of 1 mM to 5M HNO3.",
"genre": "article",
"id": "sg:pub.10.1023/a:1020829228253",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1094634",
"issn": [
"0236-5731",
"1588-2780"
],
"name": "Journal of Radioanalytical and Nuclear Chemistry",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "1",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "254"
}
],
"keywords": [
"extractant loading",
"novel composite sorbent",
"removal of actinides",
"batch contact tests",
"inert matrix material",
"distribution coefficient values",
"tank waste simulant",
"composite sorbent",
"waste simulants",
"PAN matrix",
"matrix material",
"granular sorbents",
"high sorption capacity",
"separation of actinides",
"active material",
"improved kinetics",
"analytical solution",
"diisobutylcarbamoylmethylphosphine oxide",
"coefficient values",
"sorbent granules",
"sorbent",
"sorption capacity",
"inert matrix",
"polyacrylonitrile",
"loading",
"extraction chromatography resin",
"resin",
"contact test",
"materials",
"matrix",
"CMPO",
"porosity",
"simulants",
"novel approach",
"actinides",
"solution",
"oxide",
"impurities",
"wt",
"extractants",
"concentration range",
"dependency curve",
"chromatography resins",
"HNO3",
"separation",
"removal",
"complete access",
"kinetics",
"values",
"range",
"approach",
"time",
"PU",
"capacity",
"curves",
"test",
"AM",
"granules",
"development",
"octyl",
"access"
],
"name": "Development of novel composite sorbents for the removal of actinides from environmental and analytical solutions",
"pagination": "41-45",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1041676095"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1023/a:1020829228253"
]
}
],
"sameAs": [
"https://doi.org/10.1023/a:1020829228253",
"https://app.dimensions.ai/details/publication/pub.1041676095"
],
"sdDataset": "articles",
"sdDatePublished": "2022-05-20T07:21",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_355.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1023/a:1020829228253"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1023/a:1020829228253'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1023/a:1020829228253'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1023/a:1020829228253'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1023/a:1020829228253'
This table displays all metadata directly associated to this object as RDF triples.
155 TRIPLES
22 PREDICATES
90 URIs
79 LITERALS
6 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1023/a:1020829228253 | schema:about | anzsrc-for:03 |
2 | ″ | ″ | anzsrc-for:0301 |
3 | ″ | schema:author | N7fe1c9016665447f914620d20bd43de2 |
4 | ″ | schema:citation | sg:pub.10.1007/978-94-011-4546-6 |
5 | ″ | ″ | sg:pub.10.1007/bf02037360 |
6 | ″ | ″ | sg:pub.10.1007/bf02039572 |
7 | ″ | schema:datePublished | 2002-10 |
8 | ″ | schema:datePublishedReg | 2002-10-01 |
9 | ″ | schema:description | A novel approach to preparing granular sorbents for the separation of actinides has been developed, where the extractant is directly immobilized in an inert matrix. This allows substantially higher extractant loadings in the sorbent than for conventional extraction chromatography resins. This approach utilizes polyacrylonitrile (PAN) as the inert matrix material. The well-known actinide extractant octyl (phenyl)-N,N-diisobutylcarbamoylmethylphosphine oxide (CMPO) has been loaded into sorbent granules at extractant loadings from 20 to 33 wt.% CMPO. The porosity of the PAN matrix allows the active material to have rapid and complete access to the solution containing the impurities, resulting in improved kinetics and higher sorption capacities. Sorbents containing CMPO were prepared using PAN as a binding matrix, and tested against commercially available actinide extraction chromatography resins. Direct comparative batch contact tests performed with TRU-ResinÒ and CMPO-PAN using an INEEL tank waste simulant, resulting in distribution coefficient (Kd) values for Am approximately 2-90 times higher for CMPO-PAN than for TRU-ResinŇ. Batch distribution coefficient (Kd) values for Pu were approximately 60-150 times higher for CMPO-PAN than for the TRU-ResinŇ. Acid dependency curves were generated for Am and Pu with CMPO-PAN over a concentration range of 1 mM to 5M HNO3. |
10 | ″ | schema:genre | article |
11 | ″ | schema:inLanguage | en |
12 | ″ | schema:isAccessibleForFree | false |
13 | ″ | schema:isPartOf | N53d066b8624546a2a7ab7a766a277327 |
14 | ″ | ″ | N77931c7d62d74e9b85b6cf63e797a19e |
15 | ″ | ″ | sg:journal.1094634 |
16 | ″ | schema:keywords | AM |
17 | ″ | ″ | CMPO |
18 | ″ | ″ | HNO3 |
19 | ″ | ″ | PAN matrix |
20 | ″ | ″ | PU |
21 | ″ | ″ | access |
22 | ″ | ″ | actinides |
23 | ″ | ″ | active material |
24 | ″ | ″ | analytical solution |
25 | ″ | ″ | approach |
26 | ″ | ″ | batch contact tests |
27 | ″ | ″ | capacity |
28 | ″ | ″ | chromatography resins |
29 | ″ | ″ | coefficient values |
30 | ″ | ″ | complete access |
31 | ″ | ″ | composite sorbent |
32 | ″ | ″ | concentration range |
33 | ″ | ″ | contact test |
34 | ″ | ″ | curves |
35 | ″ | ″ | dependency curve |
36 | ″ | ″ | development |
37 | ″ | ″ | diisobutylcarbamoylmethylphosphine oxide |
38 | ″ | ″ | distribution coefficient values |
39 | ″ | ″ | extractant loading |
40 | ″ | ″ | extractants |
41 | ″ | ″ | extraction chromatography resin |
42 | ″ | ″ | granular sorbents |
43 | ″ | ″ | granules |
44 | ″ | ″ | high sorption capacity |
45 | ″ | ″ | improved kinetics |
46 | ″ | ″ | impurities |
47 | ″ | ″ | inert matrix |
48 | ″ | ″ | inert matrix material |
49 | ″ | ″ | kinetics |
50 | ″ | ″ | loading |
51 | ″ | ″ | materials |
52 | ″ | ″ | matrix |
53 | ″ | ″ | matrix material |
54 | ″ | ″ | novel approach |
55 | ″ | ″ | novel composite sorbent |
56 | ″ | ″ | octyl |
57 | ″ | ″ | oxide |
58 | ″ | ″ | polyacrylonitrile |
59 | ″ | ″ | porosity |
60 | ″ | ″ | range |
61 | ″ | ″ | removal |
62 | ″ | ″ | removal of actinides |
63 | ″ | ″ | resin |
64 | ″ | ″ | separation |
65 | ″ | ″ | separation of actinides |
66 | ″ | ″ | simulants |
67 | ″ | ″ | solution |
68 | ″ | ″ | sorbent |
69 | ″ | ″ | sorbent granules |
70 | ″ | ″ | sorption capacity |
71 | ″ | ″ | tank waste simulant |
72 | ″ | ″ | test |
73 | ″ | ″ | time |
74 | ″ | ″ | values |
75 | ″ | ″ | waste simulants |
76 | ″ | ″ | wt |
77 | ″ | schema:name | Development of novel composite sorbents for the removal of actinides from environmental and analytical solutions |
78 | ″ | schema:pagination | 41-45 |
79 | ″ | schema:productId | Nb3ba3b72c05042c79180a1c91749add8 |
80 | ″ | ″ | Nb564a8b02ae24ceda85808305007f40b |
81 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1041676095 |
82 | ″ | ″ | https://doi.org/10.1023/a:1020829228253 |
83 | ″ | schema:sdDatePublished | 2022-05-20T07:21 |
84 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
85 | ″ | schema:sdPublisher | Necc9565ef0b946f38213ce56c43b4ab5 |
86 | ″ | schema:url | https://doi.org/10.1023/a:1020829228253 |
87 | ″ | sgo:license | sg:explorer/license/ |
88 | ″ | sgo:sdDataset | articles |
89 | ″ | rdf:type | schema:ScholarlyArticle |
90 | N042822b5410a48aabfd53b8a76305357 | rdf:first | sg:person.07636642363.03 |
91 | ″ | rdf:rest | Nf3202d83daac41a2a06d154f4396d778 |
92 | N53d066b8624546a2a7ab7a766a277327 | schema:volumeNumber | 254 |
93 | ″ | rdf:type | schema:PublicationVolume |
94 | N77931c7d62d74e9b85b6cf63e797a19e | schema:issueNumber | 1 |
95 | ″ | rdf:type | schema:PublicationIssue |
96 | N7fe1c9016665447f914620d20bd43de2 | rdf:first | sg:person.01170366743.50 |
97 | ″ | rdf:rest | N042822b5410a48aabfd53b8a76305357 |
98 | N981147b78107429c8dad940f30203c3f | rdf:first | sg:person.014502716325.78 |
99 | ″ | rdf:rest | rdf:nil |
100 | Nb3ba3b72c05042c79180a1c91749add8 | schema:name | doi |
101 | ″ | schema:value | 10.1023/a:1020829228253 |
102 | ″ | rdf:type | schema:PropertyValue |
103 | Nb564a8b02ae24ceda85808305007f40b | schema:name | dimensions_id |
104 | ″ | schema:value | pub.1041676095 |
105 | ″ | rdf:type | schema:PropertyValue |
106 | Necc9565ef0b946f38213ce56c43b4ab5 | schema:name | Springer Nature - SN SciGraph project |
107 | ″ | rdf:type | schema:Organization |
108 | Nf3202d83daac41a2a06d154f4396d778 | rdf:first | sg:person.014253255031.63 |
109 | ″ | rdf:rest | N981147b78107429c8dad940f30203c3f |
110 | anzsrc-for:03 | schema:inDefinedTermSet | anzsrc-for: |
111 | ″ | schema:name | Chemical Sciences |
112 | ″ | rdf:type | schema:DefinedTerm |
113 | anzsrc-for:0301 | schema:inDefinedTermSet | anzsrc-for: |
114 | ″ | schema:name | Analytical Chemistry |
115 | ″ | rdf:type | schema:DefinedTerm |
116 | sg:journal.1094634 | schema:issn | 0236-5731 |
117 | ″ | ″ | 1588-2780 |
118 | ″ | schema:name | Journal of Radioanalytical and Nuclear Chemistry |
119 | ″ | schema:publisher | Springer Nature |
120 | ″ | rdf:type | schema:Periodical |
121 | sg:person.01170366743.50 | schema:affiliation | grid-institutes:None |
122 | ″ | schema:familyName | Mann |
123 | ″ | schema:givenName | N. R. |
124 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01170366743.50 |
125 | ″ | rdf:type | schema:Person |
126 | sg:person.014253255031.63 | schema:affiliation | grid-institutes:None |
127 | ″ | schema:familyName | Tranter |
128 | ″ | schema:givenName | T. J. |
129 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014253255031.63 |
130 | ″ | rdf:type | schema:Person |
131 | sg:person.014502716325.78 | schema:affiliation | grid-institutes:grid.6652.7 |
132 | ″ | schema:familyName | Šebesta |
133 | ″ | schema:givenName | F. |
134 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014502716325.78 |
135 | ″ | rdf:type | schema:Person |
136 | sg:person.07636642363.03 | schema:affiliation | grid-institutes:None |
137 | ″ | schema:familyName | Todd |
138 | ″ | schema:givenName | T. A. |
139 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07636642363.03 |
140 | ″ | rdf:type | schema:Person |
141 | sg:pub.10.1007/978-94-011-4546-6 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1025701581 |
142 | ″ | ″ | https://doi.org/10.1007/978-94-011-4546-6 |
143 | ″ | rdf:type | schema:CreativeWork |
144 | sg:pub.10.1007/bf02037360 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1006128068 |
145 | ″ | ″ | https://doi.org/10.1007/bf02037360 |
146 | ″ | rdf:type | schema:CreativeWork |
147 | sg:pub.10.1007/bf02039572 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1046311133 |
148 | ″ | ″ | https://doi.org/10.1007/bf02039572 |
149 | ″ | rdf:type | schema:CreativeWork |
150 | grid-institutes:None | schema:alternateName | Bechtel BWXT Idaho, LLC, P. O. Box 1625, 83415-5218, Idaho Falls, ID, USA |
151 | ″ | schema:name | Bechtel BWXT Idaho, LLC, P. O. Box 1625, 83415-5218, Idaho Falls, ID, USA |
152 | ″ | rdf:type | schema:Organization |
153 | grid-institutes:grid.6652.7 | schema:alternateName | Czech Technical University in Prague, Břehova 7, CS-115 19, Prague, Czech Republic |
154 | ″ | schema:name | Czech Technical University in Prague, Břehova 7, CS-115 19, Prague, Czech Republic |
155 | ″ | rdf:type | schema:Organization |