A Space Dependent Wigner Equation Including Phonon Interaction View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2002-07

AUTHORS

M. Nedjalkov, H. Kosina, R. Kosik, S. Selberherr

ABSTRACT

We present a kinetic equation which is obtained after a hierarchy of approximations from the generalized Wigner function equation which accounts for interaction with phonons. The equation treats the coherent part of the transport imposed by the nanostructure potential at a rigorous quantum level. It is general enough to account for the quantum effects in the dissipative part of the transport due to the electron-phonon interaction. Numerical experiments demonstrate the effects of collisional broadening, retardation and the intra-collisional field effect. The obtained equation can be regarded as a generalization of the Levinson equation for space dependence. An analysis shows that the equation is nonlocal in the real space. This quantum effect is due to the correlation between the interaction process and the space component of the Wigner path. More... »

PAGES

27-31

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1023/a:1020799224110

DOI

http://dx.doi.org/10.1023/a:1020799224110

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1013940672


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institute for Microelectronics, TU Vienna, Gusshausstrasse 27\u201329, A-1040, Vienna, Austria", 
          "id": "http://www.grid.ac/institutes/grid.5329.d", 
          "name": [
            "Institute for Microelectronics, TU Vienna, Gusshausstrasse 27\u201329, A-1040, Vienna, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nedjalkov", 
        "givenName": "M.", 
        "id": "sg:person.011142023427.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011142023427.48"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute for Microelectronics, TU Vienna, Gusshausstrasse 27\u201329, A-1040, Vienna, Austria", 
          "id": "http://www.grid.ac/institutes/grid.5329.d", 
          "name": [
            "Institute for Microelectronics, TU Vienna, Gusshausstrasse 27\u201329, A-1040, Vienna, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kosina", 
        "givenName": "H.", 
        "id": "sg:person.016550513317.72", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016550513317.72"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute for Microelectronics, TU Vienna, Gusshausstrasse 27\u201329, A-1040, Vienna, Austria", 
          "id": "http://www.grid.ac/institutes/grid.5329.d", 
          "name": [
            "Institute for Microelectronics, TU Vienna, Gusshausstrasse 27\u201329, A-1040, Vienna, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kosik", 
        "givenName": "R.", 
        "id": "sg:person.016316311421.39", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016316311421.39"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute for Microelectronics, TU Vienna, Gusshausstrasse 27\u201329, A-1040, Vienna, Austria", 
          "id": "http://www.grid.ac/institutes/grid.5329.d", 
          "name": [
            "Institute for Microelectronics, TU Vienna, Gusshausstrasse 27\u201329, A-1040, Vienna, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Selberherr", 
        "givenName": "S.", 
        "id": "sg:person.013033344117.92", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013033344117.92"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/3-540-45346-6_14", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038413363", 
          "https://doi.org/10.1007/3-540-45346-6_14"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2002-07", 
    "datePublishedReg": "2002-07-01", 
    "description": "We present a kinetic equation which is obtained after a hierarchy of approximations from the generalized Wigner function equation which accounts for interaction with phonons. The equation treats the coherent part of the transport imposed by the nanostructure potential at a rigorous quantum level. It is general enough to account for the quantum effects in the dissipative part of the transport due to the electron-phonon interaction. Numerical experiments demonstrate the effects of collisional broadening, retardation and the intra-collisional field effect. The obtained equation can be regarded as a generalization of the Levinson equation for space dependence. An analysis shows that the equation is nonlocal in the real space. This quantum effect is due to the correlation between the interaction process and the space component of the Wigner path.", 
    "genre": "article", 
    "id": "sg:pub.10.1023/a:1020799224110", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1036340", 
        "issn": [
          "1569-8025", 
          "1572-8137"
        ], 
        "name": "Journal of Computational Electronics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1-2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "1"
      }
    ], 
    "keywords": [
      "quantum effects", 
      "intra-collisional field effect", 
      "hierarchy of approximations", 
      "electron-phonon interaction", 
      "Levinson equation", 
      "Wigner equation", 
      "Wigner paths", 
      "dissipative part", 
      "quantum level", 
      "space dependence", 
      "phonon interaction", 
      "numerical experiments", 
      "equations", 
      "collisional broadening", 
      "coherent part", 
      "real space", 
      "function equation", 
      "kinetic equation", 
      "field effects", 
      "interaction process", 
      "space components", 
      "approximation", 
      "phonons", 
      "broadening", 
      "generalization", 
      "space", 
      "interaction", 
      "dependence", 
      "transport", 
      "path", 
      "hierarchy", 
      "experiments", 
      "effect", 
      "potential", 
      "part", 
      "analysis", 
      "components", 
      "correlation", 
      "process", 
      "levels", 
      "retardation"
    ], 
    "name": "A Space Dependent Wigner Equation Including Phonon Interaction", 
    "pagination": "27-31", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1013940672"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1023/a:1020799224110"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1023/a:1020799224110", 
      "https://app.dimensions.ai/details/publication/pub.1013940672"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-05-10T09:53", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/article/article_356.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1023/a:1020799224110"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1023/a:1020799224110'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1023/a:1020799224110'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1023/a:1020799224110'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1023/a:1020799224110'


 

This table displays all metadata directly associated to this object as RDF triples.

124 TRIPLES      22 PREDICATES      68 URIs      59 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1023/a:1020799224110 schema:about anzsrc-for:02
2 anzsrc-for:0202
3 schema:author Nc37f4eea1ee545bda602419182d46884
4 schema:citation sg:pub.10.1007/3-540-45346-6_14
5 schema:datePublished 2002-07
6 schema:datePublishedReg 2002-07-01
7 schema:description We present a kinetic equation which is obtained after a hierarchy of approximations from the generalized Wigner function equation which accounts for interaction with phonons. The equation treats the coherent part of the transport imposed by the nanostructure potential at a rigorous quantum level. It is general enough to account for the quantum effects in the dissipative part of the transport due to the electron-phonon interaction. Numerical experiments demonstrate the effects of collisional broadening, retardation and the intra-collisional field effect. The obtained equation can be regarded as a generalization of the Levinson equation for space dependence. An analysis shows that the equation is nonlocal in the real space. This quantum effect is due to the correlation between the interaction process and the space component of the Wigner path.
8 schema:genre article
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf N079eaaa7e80f448497da2701e219c815
12 N080e5c75cd584710bced8f092191b32c
13 sg:journal.1036340
14 schema:keywords Levinson equation
15 Wigner equation
16 Wigner paths
17 analysis
18 approximation
19 broadening
20 coherent part
21 collisional broadening
22 components
23 correlation
24 dependence
25 dissipative part
26 effect
27 electron-phonon interaction
28 equations
29 experiments
30 field effects
31 function equation
32 generalization
33 hierarchy
34 hierarchy of approximations
35 interaction
36 interaction process
37 intra-collisional field effect
38 kinetic equation
39 levels
40 numerical experiments
41 part
42 path
43 phonon interaction
44 phonons
45 potential
46 process
47 quantum effects
48 quantum level
49 real space
50 retardation
51 space
52 space components
53 space dependence
54 transport
55 schema:name A Space Dependent Wigner Equation Including Phonon Interaction
56 schema:pagination 27-31
57 schema:productId N7b68ed8287294a6a8a8a7aa458385774
58 N9e4ec48ea6ea476780936d751bd36a1e
59 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013940672
60 https://doi.org/10.1023/a:1020799224110
61 schema:sdDatePublished 2022-05-10T09:53
62 schema:sdLicense https://scigraph.springernature.com/explorer/license/
63 schema:sdPublisher N4b2ad71b12614a04af9aca4955d48786
64 schema:url https://doi.org/10.1023/a:1020799224110
65 sgo:license sg:explorer/license/
66 sgo:sdDataset articles
67 rdf:type schema:ScholarlyArticle
68 N02c17ea3a41c429bbb1e196b7e3d20a2 rdf:first sg:person.013033344117.92
69 rdf:rest rdf:nil
70 N079eaaa7e80f448497da2701e219c815 schema:volumeNumber 1
71 rdf:type schema:PublicationVolume
72 N080e5c75cd584710bced8f092191b32c schema:issueNumber 1-2
73 rdf:type schema:PublicationIssue
74 N4b2ad71b12614a04af9aca4955d48786 schema:name Springer Nature - SN SciGraph project
75 rdf:type schema:Organization
76 N4f10b3287b6d4cf08a34741813e40fff rdf:first sg:person.016316311421.39
77 rdf:rest N02c17ea3a41c429bbb1e196b7e3d20a2
78 N7b68ed8287294a6a8a8a7aa458385774 schema:name dimensions_id
79 schema:value pub.1013940672
80 rdf:type schema:PropertyValue
81 N8acab556647d470ea9878c2380e50583 rdf:first sg:person.016550513317.72
82 rdf:rest N4f10b3287b6d4cf08a34741813e40fff
83 N9e4ec48ea6ea476780936d751bd36a1e schema:name doi
84 schema:value 10.1023/a:1020799224110
85 rdf:type schema:PropertyValue
86 Nc37f4eea1ee545bda602419182d46884 rdf:first sg:person.011142023427.48
87 rdf:rest N8acab556647d470ea9878c2380e50583
88 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
89 schema:name Physical Sciences
90 rdf:type schema:DefinedTerm
91 anzsrc-for:0202 schema:inDefinedTermSet anzsrc-for:
92 schema:name Atomic, Molecular, Nuclear, Particle and Plasma Physics
93 rdf:type schema:DefinedTerm
94 sg:journal.1036340 schema:issn 1569-8025
95 1572-8137
96 schema:name Journal of Computational Electronics
97 schema:publisher Springer Nature
98 rdf:type schema:Periodical
99 sg:person.011142023427.48 schema:affiliation grid-institutes:grid.5329.d
100 schema:familyName Nedjalkov
101 schema:givenName M.
102 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011142023427.48
103 rdf:type schema:Person
104 sg:person.013033344117.92 schema:affiliation grid-institutes:grid.5329.d
105 schema:familyName Selberherr
106 schema:givenName S.
107 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013033344117.92
108 rdf:type schema:Person
109 sg:person.016316311421.39 schema:affiliation grid-institutes:grid.5329.d
110 schema:familyName Kosik
111 schema:givenName R.
112 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016316311421.39
113 rdf:type schema:Person
114 sg:person.016550513317.72 schema:affiliation grid-institutes:grid.5329.d
115 schema:familyName Kosina
116 schema:givenName H.
117 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016550513317.72
118 rdf:type schema:Person
119 sg:pub.10.1007/3-540-45346-6_14 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038413363
120 https://doi.org/10.1007/3-540-45346-6_14
121 rdf:type schema:CreativeWork
122 grid-institutes:grid.5329.d schema:alternateName Institute for Microelectronics, TU Vienna, Gusshausstrasse 27–29, A-1040, Vienna, Austria
123 schema:name Institute for Microelectronics, TU Vienna, Gusshausstrasse 27–29, A-1040, Vienna, Austria
124 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...