An Inventory-Location Model: Formulation, Solution Algorithm and Computational Results View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2002-02

AUTHORS

Mark S. Daskin, Collette R. Coullard, Zuo-Jun Max Shen

ABSTRACT

We introduce a distribution center (DC) location model that incorporates working inventory and safety stock inventory costs at the distribution centers. In addition, the model incorporates transport costs from the suppliers to the DCs that explicitly reflect economies of scale through the use of a fixed cost term. The model is formulated as a non-linear integer-programming problem. Model properties are outlined. A Lagrangian relaxation solution algorithm is proposed. By exploiting the structure of the problem we can find a low-order polynomial algorithm for the non-linear integer programming problem that must be solved in solving the Lagrangian relaxation subproblems. A number of heuristics are outlined for finding good feasible solutions. In addition, we describe two variable forcing rules that prove to be very effective at forcing candidate sites into and out of the solution. The algorithms are tested on problems with 88 and 150 retailers. Computation times are consistently below one minute and compare favorably with those of an earlier proposed set partitioning approach for this model (Shen, 2000; Shen, Coullard and Daskin, 2000). Finally, we discuss the sensitivity of the results to changes in key parameters including the fixed cost of placing orders. Significant reductions in these costs might be expected from e-commerce technologies. The model suggests that as these costs decrease it is optimal to locate additional facilities. More... »

PAGES

83-106

Identifiers

URI

http://scigraph.springernature.com/pub.10.1023/a:1020763400324

DOI

http://dx.doi.org/10.1023/a:1020763400324

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1046612687


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Numerical and Computational Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Northwestern University", 
          "id": "https://www.grid.ac/institutes/grid.16753.36", 
          "name": [
            "Department of Industrial Engineering and Management Sciences, Northwestern University, 60208, Evanston, IL, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Daskin", 
        "givenName": "Mark S.", 
        "id": "sg:person.01315212054.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01315212054.41"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Northwestern University", 
          "id": "https://www.grid.ac/institutes/grid.16753.36", 
          "name": [
            "Department of Industrial Engineering and Management Sciences, Northwestern University, 60208, Evanston, IL, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Coullard", 
        "givenName": "Collette R.", 
        "id": "sg:person.012275247052.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012275247052.31"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Northwestern University", 
          "id": "https://www.grid.ac/institutes/grid.16753.36", 
          "name": [
            "Department of Industrial Engineering and Management Sciences, Northwestern University, 60208, Evanston, IL, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shen", 
        "givenName": "Zuo-Jun Max", 
        "id": "sg:person.013721655423.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013721655423.52"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/0377-2217(89)90189-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007611645"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0377-2217(89)90189-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007611645"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0927-0507(05)80108-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018886506"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4615-5203-1_10", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033603540", 
          "https://doi.org/10.1007/978-1-4615-5203-1_10"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4615-5203-1_10", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033603540", 
          "https://doi.org/10.1007/978-1-4615-5203-1_10"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1057/jors.1989.74", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038829459", 
          "https://doi.org/10.1057/jors.1989.74"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/07408170108936811", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040225744"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0377-2217(97)00172-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041471643"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1287/inte.15.2.10", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064708835"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1287/mnsc.12.3.253", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064715945"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1287/mnsc.25.5.498", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064719204"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1287/mnsc.27.1.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064719374"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1287/mnsc.38.1.87", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064720879"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1287/mnsc.42.6.830", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064721510"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1287/mnsc.43.3.294", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064721601"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1287/mnsc.43.4.546", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064721617"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1287/opre.12.3.450", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064726763"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1287/opre.13.3.462", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064726867"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1287/opre.16.5.955", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064727303"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1287/opre.32.5.1019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064729553"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1287/opre.46.1.96", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064731026"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2002-02", 
    "datePublishedReg": "2002-02-01", 
    "description": "We introduce a distribution center (DC) location model that incorporates working inventory and safety stock inventory costs at the distribution centers. In addition, the model incorporates transport costs from the suppliers to the DCs that explicitly reflect economies of scale through the use of a fixed cost term. The model is formulated as a non-linear integer-programming problem. Model properties are outlined. A Lagrangian relaxation solution algorithm is proposed. By exploiting the structure of the problem we can find a low-order polynomial algorithm for the non-linear integer programming problem that must be solved in solving the Lagrangian relaxation subproblems. A number of heuristics are outlined for finding good feasible solutions. In addition, we describe two variable forcing rules that prove to be very effective at forcing candidate sites into and out of the solution. The algorithms are tested on problems with 88 and 150 retailers. Computation times are consistently below one minute and compare favorably with those of an earlier proposed set partitioning approach for this model (Shen, 2000; Shen, Coullard and Daskin, 2000). Finally, we discuss the sensitivity of the results to changes in key parameters including the fixed cost of placing orders. Significant reductions in these costs might be expected from e-commerce technologies. The model suggests that as these costs decrease it is optimal to locate additional facilities.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1023/a:1020763400324", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1048429", 
        "issn": [
          "0254-5330", 
          "1572-9338"
        ], 
        "name": "Annals of Operations Research", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1-4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "110"
      }
    ], 
    "name": "An Inventory-Location Model: Formulation, Solution Algorithm and Computational Results", 
    "pagination": "83-106", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "de0b900b3d0f56e233704fac7a94c4175f3ad892def0b157e0f7dbc8cd2d3295"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1023/a:1020763400324"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1046612687"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1023/a:1020763400324", 
      "https://app.dimensions.ai/details/publication/pub.1046612687"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T19:56", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8681_00000507.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1023%2FA%3A1020763400324"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1023/a:1020763400324'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1023/a:1020763400324'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1023/a:1020763400324'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1023/a:1020763400324'


 

This table displays all metadata directly associated to this object as RDF triples.

134 TRIPLES      21 PREDICATES      46 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1023/a:1020763400324 schema:about anzsrc-for:01
2 anzsrc-for:0103
3 schema:author Nc0dcedac6dc4426cbf58816b533469a3
4 schema:citation sg:pub.10.1007/978-1-4615-5203-1_10
5 sg:pub.10.1057/jors.1989.74
6 https://doi.org/10.1016/0377-2217(89)90189-6
7 https://doi.org/10.1016/s0377-2217(97)00172-0
8 https://doi.org/10.1016/s0927-0507(05)80108-2
9 https://doi.org/10.1080/07408170108936811
10 https://doi.org/10.1287/inte.15.2.10
11 https://doi.org/10.1287/mnsc.12.3.253
12 https://doi.org/10.1287/mnsc.25.5.498
13 https://doi.org/10.1287/mnsc.27.1.1
14 https://doi.org/10.1287/mnsc.38.1.87
15 https://doi.org/10.1287/mnsc.42.6.830
16 https://doi.org/10.1287/mnsc.43.3.294
17 https://doi.org/10.1287/mnsc.43.4.546
18 https://doi.org/10.1287/opre.12.3.450
19 https://doi.org/10.1287/opre.13.3.462
20 https://doi.org/10.1287/opre.16.5.955
21 https://doi.org/10.1287/opre.32.5.1019
22 https://doi.org/10.1287/opre.46.1.96
23 schema:datePublished 2002-02
24 schema:datePublishedReg 2002-02-01
25 schema:description We introduce a distribution center (DC) location model that incorporates working inventory and safety stock inventory costs at the distribution centers. In addition, the model incorporates transport costs from the suppliers to the DCs that explicitly reflect economies of scale through the use of a fixed cost term. The model is formulated as a non-linear integer-programming problem. Model properties are outlined. A Lagrangian relaxation solution algorithm is proposed. By exploiting the structure of the problem we can find a low-order polynomial algorithm for the non-linear integer programming problem that must be solved in solving the Lagrangian relaxation subproblems. A number of heuristics are outlined for finding good feasible solutions. In addition, we describe two variable forcing rules that prove to be very effective at forcing candidate sites into and out of the solution. The algorithms are tested on problems with 88 and 150 retailers. Computation times are consistently below one minute and compare favorably with those of an earlier proposed set partitioning approach for this model (Shen, 2000; Shen, Coullard and Daskin, 2000). Finally, we discuss the sensitivity of the results to changes in key parameters including the fixed cost of placing orders. Significant reductions in these costs might be expected from e-commerce technologies. The model suggests that as these costs decrease it is optimal to locate additional facilities.
26 schema:genre research_article
27 schema:inLanguage en
28 schema:isAccessibleForFree false
29 schema:isPartOf N0ae53d8e46df4fcf9a4f846271f01795
30 N9ba76a5e33aa4114a8102a1d0c0b45de
31 sg:journal.1048429
32 schema:name An Inventory-Location Model: Formulation, Solution Algorithm and Computational Results
33 schema:pagination 83-106
34 schema:productId N12676b329c8f410d808d7fa7c3f6b8aa
35 N52afae914dc940208d57217cc7aa9d10
36 N7a406b9e2dfe4c17a454a07fa001b4e0
37 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046612687
38 https://doi.org/10.1023/a:1020763400324
39 schema:sdDatePublished 2019-04-10T19:56
40 schema:sdLicense https://scigraph.springernature.com/explorer/license/
41 schema:sdPublisher Neb269a58422448ec9cc31c5e806c6815
42 schema:url http://link.springer.com/10.1023%2FA%3A1020763400324
43 sgo:license sg:explorer/license/
44 sgo:sdDataset articles
45 rdf:type schema:ScholarlyArticle
46 N0ae53d8e46df4fcf9a4f846271f01795 schema:issueNumber 1-4
47 rdf:type schema:PublicationIssue
48 N12676b329c8f410d808d7fa7c3f6b8aa schema:name doi
49 schema:value 10.1023/a:1020763400324
50 rdf:type schema:PropertyValue
51 N30e62739b66f48e5966a48e8a2bda6a7 rdf:first sg:person.013721655423.52
52 rdf:rest rdf:nil
53 N52afae914dc940208d57217cc7aa9d10 schema:name dimensions_id
54 schema:value pub.1046612687
55 rdf:type schema:PropertyValue
56 N7a406b9e2dfe4c17a454a07fa001b4e0 schema:name readcube_id
57 schema:value de0b900b3d0f56e233704fac7a94c4175f3ad892def0b157e0f7dbc8cd2d3295
58 rdf:type schema:PropertyValue
59 N9ba76a5e33aa4114a8102a1d0c0b45de schema:volumeNumber 110
60 rdf:type schema:PublicationVolume
61 Nc0dcedac6dc4426cbf58816b533469a3 rdf:first sg:person.01315212054.41
62 rdf:rest Ncb0a526063d34a379e8a77c366e33a11
63 Ncb0a526063d34a379e8a77c366e33a11 rdf:first sg:person.012275247052.31
64 rdf:rest N30e62739b66f48e5966a48e8a2bda6a7
65 Neb269a58422448ec9cc31c5e806c6815 schema:name Springer Nature - SN SciGraph project
66 rdf:type schema:Organization
67 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
68 schema:name Mathematical Sciences
69 rdf:type schema:DefinedTerm
70 anzsrc-for:0103 schema:inDefinedTermSet anzsrc-for:
71 schema:name Numerical and Computational Mathematics
72 rdf:type schema:DefinedTerm
73 sg:journal.1048429 schema:issn 0254-5330
74 1572-9338
75 schema:name Annals of Operations Research
76 rdf:type schema:Periodical
77 sg:person.012275247052.31 schema:affiliation https://www.grid.ac/institutes/grid.16753.36
78 schema:familyName Coullard
79 schema:givenName Collette R.
80 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012275247052.31
81 rdf:type schema:Person
82 sg:person.01315212054.41 schema:affiliation https://www.grid.ac/institutes/grid.16753.36
83 schema:familyName Daskin
84 schema:givenName Mark S.
85 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01315212054.41
86 rdf:type schema:Person
87 sg:person.013721655423.52 schema:affiliation https://www.grid.ac/institutes/grid.16753.36
88 schema:familyName Shen
89 schema:givenName Zuo-Jun Max
90 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013721655423.52
91 rdf:type schema:Person
92 sg:pub.10.1007/978-1-4615-5203-1_10 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033603540
93 https://doi.org/10.1007/978-1-4615-5203-1_10
94 rdf:type schema:CreativeWork
95 sg:pub.10.1057/jors.1989.74 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038829459
96 https://doi.org/10.1057/jors.1989.74
97 rdf:type schema:CreativeWork
98 https://doi.org/10.1016/0377-2217(89)90189-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007611645
99 rdf:type schema:CreativeWork
100 https://doi.org/10.1016/s0377-2217(97)00172-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041471643
101 rdf:type schema:CreativeWork
102 https://doi.org/10.1016/s0927-0507(05)80108-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018886506
103 rdf:type schema:CreativeWork
104 https://doi.org/10.1080/07408170108936811 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040225744
105 rdf:type schema:CreativeWork
106 https://doi.org/10.1287/inte.15.2.10 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064708835
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1287/mnsc.12.3.253 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064715945
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1287/mnsc.25.5.498 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064719204
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1287/mnsc.27.1.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064719374
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1287/mnsc.38.1.87 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064720879
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1287/mnsc.42.6.830 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064721510
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1287/mnsc.43.3.294 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064721601
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1287/mnsc.43.4.546 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064721617
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1287/opre.12.3.450 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064726763
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1287/opre.13.3.462 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064726867
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1287/opre.16.5.955 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064727303
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1287/opre.32.5.1019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064729553
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1287/opre.46.1.96 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064731026
131 rdf:type schema:CreativeWork
132 https://www.grid.ac/institutes/grid.16753.36 schema:alternateName Northwestern University
133 schema:name Department of Industrial Engineering and Management Sciences, Northwestern University, 60208, Evanston, IL, USA
134 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...