Quantum Macroscopic Effects in a Degenerate Strongly Magnetized Nucleon Gas View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2002-10

AUTHORS

V. R. Khalilov

ABSTRACT

A model of a degenerate gas consisting of neutrons that are in chemical equilibrium with degenerate protons and electrons in a stationary and homogeneous superstrong magnetic field is used to describe the state of the matter in central regions of strongly magnetized neutron stars. Expressions for thermodynamic quantities (such as energy density, particle density, pressure, and magnetization) characterizing a degenerate gas of neutrons, protons, and electrons are obtained. In these expressions, the contributions determined by the interaction between anomalous magnetic moments of fermions and the magnetic field are taken into account. Macroscopic effects that may occur in strongly magnetized neutron stars are discussed. We show that all thermodynamic quantities characterizing electrically charged fermions in a strong magnetic field are subject to nonperiodic oscillations caused by the interaction of the anomalous magnetic moments of protons and electrons with the magnetic field. We also show that if the nucleon density and the electron density exceed threshold values that are relatively small and depend on the magnetic field strength, all fermions are fully polarized with respect to the spin. The full spin polarization effect in neutrons is caused by the interaction between the anomalous magnetic moment and the magnetic field. The obtained results may prove useful in understanding processes that occur in the nucleus of a neutron star with a magnetic field “frozen into” the star. More... »

PAGES

1406-1420

Identifiers

URI

http://scigraph.springernature.com/pub.10.1023/a:1020650115149

DOI

http://dx.doi.org/10.1023/a:1020650115149

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1012270579


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Moscow State University", 
          "id": "https://www.grid.ac/institutes/grid.14476.30", 
          "name": [
            "Moscow State University, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Khalilov", 
        "givenName": "V. R.", 
        "id": "sg:person.013233115763.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013233115763.52"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1080/10556799308230566", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004515013"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/318277", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010071398"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1010320001946", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015509107", 
          "https://doi.org/10.1023/a:1010320001946"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/30410", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019483518", 
          "https://doi.org/10.1038/30410"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/30410", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019483518", 
          "https://doi.org/10.1038/30410"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.84.5261", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019744850"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.84.5261", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019744850"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/1.558549", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027760987", 
          "https://doi.org/10.1134/1.558549"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.78.2898", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032811031"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.78.2898", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032811031"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.79.2176", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037610987"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.79.2176", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037610987"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1013880415412", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044514575", 
          "https://doi.org/10.1023/a:1013880415412"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/16199", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047387262", 
          "https://doi.org/10.1038/16199"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/170831", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058502121"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/309010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058616529"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.173.1210", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060439163"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.173.1210", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060439163"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.65.056001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060705228"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.65.056001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060705228"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.66.2701", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060802549"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.66.2701", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060802549"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/s0217984996001309", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062948617"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2002-10", 
    "datePublishedReg": "2002-10-01", 
    "description": "A model of a degenerate gas consisting of neutrons that are in chemical equilibrium with degenerate protons and electrons in a stationary and homogeneous superstrong magnetic field is used to describe the state of the matter in central regions of strongly magnetized neutron stars. Expressions for thermodynamic quantities (such as energy density, particle density, pressure, and magnetization) characterizing a degenerate gas of neutrons, protons, and electrons are obtained. In these expressions, the contributions determined by the interaction between anomalous magnetic moments of fermions and the magnetic field are taken into account. Macroscopic effects that may occur in strongly magnetized neutron stars are discussed. We show that all thermodynamic quantities characterizing electrically charged fermions in a strong magnetic field are subject to nonperiodic oscillations caused by the interaction of the anomalous magnetic moments of protons and electrons with the magnetic field. We also show that if the nucleon density and the electron density exceed threshold values that are relatively small and depend on the magnetic field strength, all fermions are fully polarized with respect to the spin. The full spin polarization effect in neutrons is caused by the interaction between the anomalous magnetic moment and the magnetic field. The obtained results may prove useful in understanding processes that occur in the nucleus of a neutron star with a magnetic field \u201cfrozen into\u201d the star.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1023/a:1020650115149", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1327888", 
        "issn": [
          "0040-5779", 
          "2305-3135"
        ], 
        "name": "Theoretical and Mathematical Physics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "133"
      }
    ], 
    "name": "Quantum Macroscopic Effects in a Degenerate Strongly Magnetized Nucleon Gas", 
    "pagination": "1406-1420", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "3a75fc0999a81a587ec60128831431c7f4169c165da581f5d581c9af3513c3b2"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1023/a:1020650115149"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1012270579"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1023/a:1020650115149", 
      "https://app.dimensions.ai/details/publication/pub.1012270579"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T00:14", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8695_00000504.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1023%2FA%3A1020650115149"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1023/a:1020650115149'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1023/a:1020650115149'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1023/a:1020650115149'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1023/a:1020650115149'


 

This table displays all metadata directly associated to this object as RDF triples.

114 TRIPLES      21 PREDICATES      43 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1023/a:1020650115149 schema:about anzsrc-for:02
2 anzsrc-for:0202
3 schema:author N7aaf31206fe54b14bcc01b04b3ba4536
4 schema:citation sg:pub.10.1023/a:1010320001946
5 sg:pub.10.1023/a:1013880415412
6 sg:pub.10.1038/16199
7 sg:pub.10.1038/30410
8 sg:pub.10.1134/1.558549
9 https://doi.org/10.1080/10556799308230566
10 https://doi.org/10.1086/170831
11 https://doi.org/10.1086/309010
12 https://doi.org/10.1086/318277
13 https://doi.org/10.1103/physrev.173.1210
14 https://doi.org/10.1103/physrevd.65.056001
15 https://doi.org/10.1103/physrevlett.66.2701
16 https://doi.org/10.1103/physrevlett.78.2898
17 https://doi.org/10.1103/physrevlett.79.2176
18 https://doi.org/10.1103/physrevlett.84.5261
19 https://doi.org/10.1142/s0217984996001309
20 schema:datePublished 2002-10
21 schema:datePublishedReg 2002-10-01
22 schema:description A model of a degenerate gas consisting of neutrons that are in chemical equilibrium with degenerate protons and electrons in a stationary and homogeneous superstrong magnetic field is used to describe the state of the matter in central regions of strongly magnetized neutron stars. Expressions for thermodynamic quantities (such as energy density, particle density, pressure, and magnetization) characterizing a degenerate gas of neutrons, protons, and electrons are obtained. In these expressions, the contributions determined by the interaction between anomalous magnetic moments of fermions and the magnetic field are taken into account. Macroscopic effects that may occur in strongly magnetized neutron stars are discussed. We show that all thermodynamic quantities characterizing electrically charged fermions in a strong magnetic field are subject to nonperiodic oscillations caused by the interaction of the anomalous magnetic moments of protons and electrons with the magnetic field. We also show that if the nucleon density and the electron density exceed threshold values that are relatively small and depend on the magnetic field strength, all fermions are fully polarized with respect to the spin. The full spin polarization effect in neutrons is caused by the interaction between the anomalous magnetic moment and the magnetic field. The obtained results may prove useful in understanding processes that occur in the nucleus of a neutron star with a magnetic field “frozen into” the star.
23 schema:genre research_article
24 schema:inLanguage en
25 schema:isAccessibleForFree false
26 schema:isPartOf Nbd99e4fa457f474597d16bd8afd6cac7
27 Ne6fa6a91ccde450e87f4a8bec0a731dd
28 sg:journal.1327888
29 schema:name Quantum Macroscopic Effects in a Degenerate Strongly Magnetized Nucleon Gas
30 schema:pagination 1406-1420
31 schema:productId N3135cb95d9c14a53947f45b91241d3d2
32 N4b994913f65144b08a1028111b68c934
33 N5eaf4845c59741b897de6a6065cfef3b
34 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012270579
35 https://doi.org/10.1023/a:1020650115149
36 schema:sdDatePublished 2019-04-11T00:14
37 schema:sdLicense https://scigraph.springernature.com/explorer/license/
38 schema:sdPublisher Ne4352702310c4e04bf6cbedff548284c
39 schema:url http://link.springer.com/10.1023%2FA%3A1020650115149
40 sgo:license sg:explorer/license/
41 sgo:sdDataset articles
42 rdf:type schema:ScholarlyArticle
43 N3135cb95d9c14a53947f45b91241d3d2 schema:name readcube_id
44 schema:value 3a75fc0999a81a587ec60128831431c7f4169c165da581f5d581c9af3513c3b2
45 rdf:type schema:PropertyValue
46 N4b994913f65144b08a1028111b68c934 schema:name doi
47 schema:value 10.1023/a:1020650115149
48 rdf:type schema:PropertyValue
49 N5eaf4845c59741b897de6a6065cfef3b schema:name dimensions_id
50 schema:value pub.1012270579
51 rdf:type schema:PropertyValue
52 N7aaf31206fe54b14bcc01b04b3ba4536 rdf:first sg:person.013233115763.52
53 rdf:rest rdf:nil
54 Nbd99e4fa457f474597d16bd8afd6cac7 schema:issueNumber 1
55 rdf:type schema:PublicationIssue
56 Ne4352702310c4e04bf6cbedff548284c schema:name Springer Nature - SN SciGraph project
57 rdf:type schema:Organization
58 Ne6fa6a91ccde450e87f4a8bec0a731dd schema:volumeNumber 133
59 rdf:type schema:PublicationVolume
60 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
61 schema:name Physical Sciences
62 rdf:type schema:DefinedTerm
63 anzsrc-for:0202 schema:inDefinedTermSet anzsrc-for:
64 schema:name Atomic, Molecular, Nuclear, Particle and Plasma Physics
65 rdf:type schema:DefinedTerm
66 sg:journal.1327888 schema:issn 0040-5779
67 2305-3135
68 schema:name Theoretical and Mathematical Physics
69 rdf:type schema:Periodical
70 sg:person.013233115763.52 schema:affiliation https://www.grid.ac/institutes/grid.14476.30
71 schema:familyName Khalilov
72 schema:givenName V. R.
73 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013233115763.52
74 rdf:type schema:Person
75 sg:pub.10.1023/a:1010320001946 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015509107
76 https://doi.org/10.1023/a:1010320001946
77 rdf:type schema:CreativeWork
78 sg:pub.10.1023/a:1013880415412 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044514575
79 https://doi.org/10.1023/a:1013880415412
80 rdf:type schema:CreativeWork
81 sg:pub.10.1038/16199 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047387262
82 https://doi.org/10.1038/16199
83 rdf:type schema:CreativeWork
84 sg:pub.10.1038/30410 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019483518
85 https://doi.org/10.1038/30410
86 rdf:type schema:CreativeWork
87 sg:pub.10.1134/1.558549 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027760987
88 https://doi.org/10.1134/1.558549
89 rdf:type schema:CreativeWork
90 https://doi.org/10.1080/10556799308230566 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004515013
91 rdf:type schema:CreativeWork
92 https://doi.org/10.1086/170831 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058502121
93 rdf:type schema:CreativeWork
94 https://doi.org/10.1086/309010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058616529
95 rdf:type schema:CreativeWork
96 https://doi.org/10.1086/318277 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010071398
97 rdf:type schema:CreativeWork
98 https://doi.org/10.1103/physrev.173.1210 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060439163
99 rdf:type schema:CreativeWork
100 https://doi.org/10.1103/physrevd.65.056001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060705228
101 rdf:type schema:CreativeWork
102 https://doi.org/10.1103/physrevlett.66.2701 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060802549
103 rdf:type schema:CreativeWork
104 https://doi.org/10.1103/physrevlett.78.2898 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032811031
105 rdf:type schema:CreativeWork
106 https://doi.org/10.1103/physrevlett.79.2176 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037610987
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1103/physrevlett.84.5261 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019744850
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1142/s0217984996001309 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062948617
111 rdf:type schema:CreativeWork
112 https://www.grid.ac/institutes/grid.14476.30 schema:alternateName Moscow State University
113 schema:name Moscow State University, Moscow, Russia
114 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...