Ontology type: schema:ScholarlyArticle
2002-05
AUTHORSIlya Gluhovsky, Vladimir Melnik, Ilya Shmulevich
ABSTRACTWe consider a median pyramidal transform for denoising applications. Traditional techniques of pyramidal denoising are similar to those in wavelet-based methods. In order to remove noise, they use the thresholding of transform coefficients. We propose to model the structure of the transform coefficients as a Markov random field. The goal of modeling transform coefficients is to retain significant coefficients on each scale and to discard the rest. Estimation of the transform coefficient structure is obtained via a Markov chain sampler. A technique is proposed to estimate the parameters of the field's distribution. The advantage of our method is that we are able to utilize the interactions between transform coefficients, both within each scale and among the scales, which leads to denoising improvement as demonstrated by numerical simulations. More... »
PAGES237-249
http://scigraph.springernature.com/pub.10.1023/a:1020381711050
DOIhttp://dx.doi.org/10.1023/a:1020381711050
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1034737650
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Mathematical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Statistics",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Sun Microsystems Laboratories, Palo Alto, CA, USA",
"id": "http://www.grid.ac/institutes/grid.419799.b",
"name": [
"Sun Microsystems Laboratories, Palo Alto, CA, USA"
],
"type": "Organization"
},
"familyName": "Gluhovsky",
"givenName": "Ilya",
"id": "sg:person.014110201605.09",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014110201605.09"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Nokia Networks, Espoo, Finland",
"id": "http://www.grid.ac/institutes/grid.6533.3",
"name": [
"Nokia Networks, Espoo, Finland"
],
"type": "Organization"
},
"familyName": "Melnik",
"givenName": "Vladimir",
"id": "sg:person.010407071431.44",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010407071431.44"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Cancer Genomics Laboratory, University of Texas M. D. Anderson Cancer Center, Houston, TX, USA",
"id": "http://www.grid.ac/institutes/grid.240145.6",
"name": [
"Cancer Genomics Laboratory, University of Texas M. D. Anderson Cancer Center, Houston, TX, USA"
],
"type": "Organization"
},
"familyName": "Shmulevich",
"givenName": "Ilya",
"id": "sg:person.01354314446.15",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01354314446.15"
],
"type": "Person"
}
],
"datePublished": "2002-05",
"datePublishedReg": "2002-05-01",
"description": "We consider a median pyramidal transform for denoising applications. Traditional techniques of pyramidal denoising are similar to those in wavelet-based methods. In order to remove noise, they use the thresholding of transform coefficients. We propose to model the structure of the transform coefficients as a Markov random field. The goal of modeling transform coefficients is to retain significant coefficients on each scale and to discard the rest. Estimation of the transform coefficient structure is obtained via a Markov chain sampler. A technique is proposed to estimate the parameters of the field's distribution. The advantage of our method is that we are able to utilize the interactions between transform coefficients, both within each scale and among the scales, which leads to denoising improvement as demonstrated by numerical simulations.",
"genre": "article",
"id": "sg:pub.10.1023/a:1020381711050",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1041815",
"issn": [
"0924-9907",
"1573-7683"
],
"name": "Journal of Mathematical Imaging and Vision",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "3",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "16"
}
],
"keywords": [
"transform coefficients",
"wavelet-based method",
"field distribution",
"numerical simulations",
"field modeling",
"transform domain",
"random field modeling",
"Markov random field modeling",
"denoising applications",
"coefficient",
"coefficient structure",
"applications",
"traditional techniques",
"simulations",
"Markov chain sampler",
"structure",
"transform",
"technique",
"noise",
"denoising",
"method",
"Markov random field",
"modeling",
"distribution",
"random fields",
"estimation",
"parameters",
"sampler",
"significant coefficients",
"field",
"thresholding",
"scale",
"advantages",
"order",
"improvement",
"interaction",
"domain",
"goal",
"rest"
],
"name": "Markov Random Field Modeling in Median Pyramidal Transform Domain for Denoising Applications",
"pagination": "237-249",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1034737650"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1023/a:1020381711050"
]
}
],
"sameAs": [
"https://doi.org/10.1023/a:1020381711050",
"https://app.dimensions.ai/details/publication/pub.1034737650"
],
"sdDataset": "articles",
"sdDatePublished": "2022-05-20T07:22",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_354.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1023/a:1020381711050"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1023/a:1020381711050'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1023/a:1020381711050'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1023/a:1020381711050'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1023/a:1020381711050'
This table displays all metadata directly associated to this object as RDF triples.
117 TRIPLES
21 PREDICATES
65 URIs
57 LITERALS
6 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1023/a:1020381711050 | schema:about | anzsrc-for:01 |
2 | ″ | ″ | anzsrc-for:0104 |
3 | ″ | schema:author | N71032e21a97c4b009edbd56c36733344 |
4 | ″ | schema:datePublished | 2002-05 |
5 | ″ | schema:datePublishedReg | 2002-05-01 |
6 | ″ | schema:description | We consider a median pyramidal transform for denoising applications. Traditional techniques of pyramidal denoising are similar to those in wavelet-based methods. In order to remove noise, they use the thresholding of transform coefficients. We propose to model the structure of the transform coefficients as a Markov random field. The goal of modeling transform coefficients is to retain significant coefficients on each scale and to discard the rest. Estimation of the transform coefficient structure is obtained via a Markov chain sampler. A technique is proposed to estimate the parameters of the field's distribution. The advantage of our method is that we are able to utilize the interactions between transform coefficients, both within each scale and among the scales, which leads to denoising improvement as demonstrated by numerical simulations. |
7 | ″ | schema:genre | article |
8 | ″ | schema:inLanguage | en |
9 | ″ | schema:isAccessibleForFree | false |
10 | ″ | schema:isPartOf | N08874f68fc7749749584e94af53b74d7 |
11 | ″ | ″ | Nf9ff4430f3474d95bad69aeda70b0f08 |
12 | ″ | ″ | sg:journal.1041815 |
13 | ″ | schema:keywords | Markov chain sampler |
14 | ″ | ″ | Markov random field |
15 | ″ | ″ | Markov random field modeling |
16 | ″ | ″ | advantages |
17 | ″ | ″ | applications |
18 | ″ | ″ | coefficient |
19 | ″ | ″ | coefficient structure |
20 | ″ | ″ | denoising |
21 | ″ | ″ | denoising applications |
22 | ″ | ″ | distribution |
23 | ″ | ″ | domain |
24 | ″ | ″ | estimation |
25 | ″ | ″ | field |
26 | ″ | ″ | field distribution |
27 | ″ | ″ | field modeling |
28 | ″ | ″ | goal |
29 | ″ | ″ | improvement |
30 | ″ | ″ | interaction |
31 | ″ | ″ | method |
32 | ″ | ″ | modeling |
33 | ″ | ″ | noise |
34 | ″ | ″ | numerical simulations |
35 | ″ | ″ | order |
36 | ″ | ″ | parameters |
37 | ″ | ″ | random field modeling |
38 | ″ | ″ | random fields |
39 | ″ | ″ | rest |
40 | ″ | ″ | sampler |
41 | ″ | ″ | scale |
42 | ″ | ″ | significant coefficients |
43 | ″ | ″ | simulations |
44 | ″ | ″ | structure |
45 | ″ | ″ | technique |
46 | ″ | ″ | thresholding |
47 | ″ | ″ | traditional techniques |
48 | ″ | ″ | transform |
49 | ″ | ″ | transform coefficients |
50 | ″ | ″ | transform domain |
51 | ″ | ″ | wavelet-based method |
52 | ″ | schema:name | Markov Random Field Modeling in Median Pyramidal Transform Domain for Denoising Applications |
53 | ″ | schema:pagination | 237-249 |
54 | ″ | schema:productId | N2510db0979a247dc8f0e3a5d662afa94 |
55 | ″ | ″ | Ne05ee1278bc84662b6f824d812c6f18a |
56 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1034737650 |
57 | ″ | ″ | https://doi.org/10.1023/a:1020381711050 |
58 | ″ | schema:sdDatePublished | 2022-05-20T07:22 |
59 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
60 | ″ | schema:sdPublisher | N0f30d944a12949149174b6fcebaed6c0 |
61 | ″ | schema:url | https://doi.org/10.1023/a:1020381711050 |
62 | ″ | sgo:license | sg:explorer/license/ |
63 | ″ | sgo:sdDataset | articles |
64 | ″ | rdf:type | schema:ScholarlyArticle |
65 | N08874f68fc7749749584e94af53b74d7 | schema:issueNumber | 3 |
66 | ″ | rdf:type | schema:PublicationIssue |
67 | N0f30d944a12949149174b6fcebaed6c0 | schema:name | Springer Nature - SN SciGraph project |
68 | ″ | rdf:type | schema:Organization |
69 | N2510db0979a247dc8f0e3a5d662afa94 | schema:name | dimensions_id |
70 | ″ | schema:value | pub.1034737650 |
71 | ″ | rdf:type | schema:PropertyValue |
72 | N71032e21a97c4b009edbd56c36733344 | rdf:first | sg:person.014110201605.09 |
73 | ″ | rdf:rest | Nab8aca99ec3e4c0e9fa200615a356886 |
74 | N8a5a47708fb2413686fb78832ba73e8a | rdf:first | sg:person.01354314446.15 |
75 | ″ | rdf:rest | rdf:nil |
76 | Nab8aca99ec3e4c0e9fa200615a356886 | rdf:first | sg:person.010407071431.44 |
77 | ″ | rdf:rest | N8a5a47708fb2413686fb78832ba73e8a |
78 | Ne05ee1278bc84662b6f824d812c6f18a | schema:name | doi |
79 | ″ | schema:value | 10.1023/a:1020381711050 |
80 | ″ | rdf:type | schema:PropertyValue |
81 | Nf9ff4430f3474d95bad69aeda70b0f08 | schema:volumeNumber | 16 |
82 | ″ | rdf:type | schema:PublicationVolume |
83 | anzsrc-for:01 | schema:inDefinedTermSet | anzsrc-for: |
84 | ″ | schema:name | Mathematical Sciences |
85 | ″ | rdf:type | schema:DefinedTerm |
86 | anzsrc-for:0104 | schema:inDefinedTermSet | anzsrc-for: |
87 | ″ | schema:name | Statistics |
88 | ″ | rdf:type | schema:DefinedTerm |
89 | sg:journal.1041815 | schema:issn | 0924-9907 |
90 | ″ | ″ | 1573-7683 |
91 | ″ | schema:name | Journal of Mathematical Imaging and Vision |
92 | ″ | schema:publisher | Springer Nature |
93 | ″ | rdf:type | schema:Periodical |
94 | sg:person.010407071431.44 | schema:affiliation | grid-institutes:grid.6533.3 |
95 | ″ | schema:familyName | Melnik |
96 | ″ | schema:givenName | Vladimir |
97 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010407071431.44 |
98 | ″ | rdf:type | schema:Person |
99 | sg:person.01354314446.15 | schema:affiliation | grid-institutes:grid.240145.6 |
100 | ″ | schema:familyName | Shmulevich |
101 | ″ | schema:givenName | Ilya |
102 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01354314446.15 |
103 | ″ | rdf:type | schema:Person |
104 | sg:person.014110201605.09 | schema:affiliation | grid-institutes:grid.419799.b |
105 | ″ | schema:familyName | Gluhovsky |
106 | ″ | schema:givenName | Ilya |
107 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014110201605.09 |
108 | ″ | rdf:type | schema:Person |
109 | grid-institutes:grid.240145.6 | schema:alternateName | Cancer Genomics Laboratory, University of Texas M. D. Anderson Cancer Center, Houston, TX, USA |
110 | ″ | schema:name | Cancer Genomics Laboratory, University of Texas M. D. Anderson Cancer Center, Houston, TX, USA |
111 | ″ | rdf:type | schema:Organization |
112 | grid-institutes:grid.419799.b | schema:alternateName | Sun Microsystems Laboratories, Palo Alto, CA, USA |
113 | ″ | schema:name | Sun Microsystems Laboratories, Palo Alto, CA, USA |
114 | ″ | rdf:type | schema:Organization |
115 | grid-institutes:grid.6533.3 | schema:alternateName | Nokia Networks, Espoo, Finland |
116 | ″ | schema:name | Nokia Networks, Espoo, Finland |
117 | ″ | rdf:type | schema:Organization |