Spatial Averages of Coverage Characteristics in Large CDMA Networks View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2002-11

AUTHORS

François Baccelli, Bartłomiej Błaszczyszyn, Florent Tournois

ABSTRACT

The aim of the present paper is to show that stochastic geometry provides an efficient computational framework allowing one to predict geometrical characteristics of large CDMA networks such as coverage or soft-handoff level. The general idea consists in representing the location of antennas and/or mobile stations as realizations of stochastic point processes in the plane within a simple parametric class, which takes into account the irregularities of antenna/mobile patterns in a statistical way. This approach leads to new formulas and simulation schemes allowing one to compute/estimate the spatial averages of these local characteristics in function of the model parameters (density of antennas or mobiles, law of emission power, fading law etc.) and to perform various parametric optimizations. More... »

PAGES

569-586

Journal

TITLE

Wireless Networks

ISSUE

6

VOLUME

8

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1023/a:1020321501945

DOI

http://dx.doi.org/10.1023/a:1020321501945

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1006459911


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "INRIA-ENS, 45 rue d'Ulm, 75005, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Baccelli", 
        "givenName": "Fran\u00e7ois", 
        "id": "sg:person.013374336621.69", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013374336621.69"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "INRIA-ENS & Mathematical Institute University of Wroc\u0142aw, 45 rue d'Ulm, 75005, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "B\u0142aszczyszyn", 
        "givenName": "Bart\u0142omiej", 
        "id": "sg:person.013154315266.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013154315266.38"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "\u00c9cole Normale Sup\u00e9rieure", 
          "id": "https://www.grid.ac/institutes/grid.5607.4", 
          "name": [
            "\u00c9cole Normale Sup\u00e9rieure, 45 rue d'Ulm, 75005, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tournois", 
        "givenName": "Florent", 
        "id": "sg:person.011221417677.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011221417677.05"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1017/s0001867800010806", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007776595"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0031-3203(99)00021-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022570245"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mana.19941680109", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026511467"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mana.19941680109", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026511467"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/(sici)1098-2418(199608/09)9:1/2<223::aid-rsa14>3.0.co;2-o", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033977441"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0001867800015378", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039666431"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/18.335940", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061099402"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/18.782121", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061101059"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/18.825799", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061101255"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/25.790518", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061135214"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/49.232298", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061176870"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/comst.1998.5340404", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061258070"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/s1064827594268725", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062884213"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2002-11", 
    "datePublishedReg": "2002-11-01", 
    "description": "The aim of the present paper is to show that stochastic geometry provides an efficient computational framework allowing one to predict geometrical characteristics of large CDMA networks such as coverage or soft-handoff level. The general idea consists in representing the location of antennas and/or mobile stations as realizations of stochastic point processes in the plane within a simple parametric class, which takes into account the irregularities of antenna/mobile patterns in a statistical way. This approach leads to new formulas and simulation schemes allowing one to compute/estimate the spatial averages of these local characteristics in function of the model parameters (density of antennas or mobiles, law of emission power, fading law etc.) and to perform various parametric optimizations.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1023/a:1020321501945", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1327893", 
        "issn": [
          "1022-0038", 
          "1572-8196"
        ], 
        "name": "Wireless Networks", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "8"
      }
    ], 
    "name": "Spatial Averages of Coverage Characteristics in Large CDMA Networks", 
    "pagination": "569-586", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "1ec5361d4c570444191a8e877cfc8c85a08732440cd3b824357bed3dcd85446f"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1023/a:1020321501945"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1006459911"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1023/a:1020321501945", 
      "https://app.dimensions.ai/details/publication/pub.1006459911"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T19:55", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8681_00000503.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1023%2FA%3A1020321501945"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1023/a:1020321501945'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1023/a:1020321501945'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1023/a:1020321501945'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1023/a:1020321501945'


 

This table displays all metadata directly associated to this object as RDF triples.

115 TRIPLES      21 PREDICATES      39 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1023/a:1020321501945 schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author Ndc38445f87e94b49b2a80abb928a4428
4 schema:citation https://doi.org/10.1002/(sici)1098-2418(199608/09)9:1/2<223::aid-rsa14>3.0.co;2-o
5 https://doi.org/10.1002/mana.19941680109
6 https://doi.org/10.1016/s0031-3203(99)00021-7
7 https://doi.org/10.1017/s0001867800010806
8 https://doi.org/10.1017/s0001867800015378
9 https://doi.org/10.1109/18.335940
10 https://doi.org/10.1109/18.782121
11 https://doi.org/10.1109/18.825799
12 https://doi.org/10.1109/25.790518
13 https://doi.org/10.1109/49.232298
14 https://doi.org/10.1109/comst.1998.5340404
15 https://doi.org/10.1137/s1064827594268725
16 schema:datePublished 2002-11
17 schema:datePublishedReg 2002-11-01
18 schema:description The aim of the present paper is to show that stochastic geometry provides an efficient computational framework allowing one to predict geometrical characteristics of large CDMA networks such as coverage or soft-handoff level. The general idea consists in representing the location of antennas and/or mobile stations as realizations of stochastic point processes in the plane within a simple parametric class, which takes into account the irregularities of antenna/mobile patterns in a statistical way. This approach leads to new formulas and simulation schemes allowing one to compute/estimate the spatial averages of these local characteristics in function of the model parameters (density of antennas or mobiles, law of emission power, fading law etc.) and to perform various parametric optimizations.
19 schema:genre research_article
20 schema:inLanguage en
21 schema:isAccessibleForFree false
22 schema:isPartOf N1595f59437434113999f5dff7189fc61
23 N8fc0a8abe76043348856135de1cbff83
24 sg:journal.1327893
25 schema:name Spatial Averages of Coverage Characteristics in Large CDMA Networks
26 schema:pagination 569-586
27 schema:productId N60d2af22afff4348a419dd0acb41ab30
28 N7f342ddcca794576a5f691a2d438b16b
29 Ne6a577b8818543eea2fa60b29f081307
30 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006459911
31 https://doi.org/10.1023/a:1020321501945
32 schema:sdDatePublished 2019-04-10T19:55
33 schema:sdLicense https://scigraph.springernature.com/explorer/license/
34 schema:sdPublisher Ne3bb954341c240638dd5b0d619141468
35 schema:url http://link.springer.com/10.1023%2FA%3A1020321501945
36 sgo:license sg:explorer/license/
37 sgo:sdDataset articles
38 rdf:type schema:ScholarlyArticle
39 N0ac2ea57612d4f38b330f47fa11b335c rdf:first sg:person.011221417677.05
40 rdf:rest rdf:nil
41 N1595f59437434113999f5dff7189fc61 schema:volumeNumber 8
42 rdf:type schema:PublicationVolume
43 N461c7dae0e6f40daae605f793c12ed8e schema:name INRIA-ENS & Mathematical Institute University of Wrocław, 45 rue d'Ulm, 75005, Paris, France
44 rdf:type schema:Organization
45 N60d2af22afff4348a419dd0acb41ab30 schema:name dimensions_id
46 schema:value pub.1006459911
47 rdf:type schema:PropertyValue
48 N7f342ddcca794576a5f691a2d438b16b schema:name readcube_id
49 schema:value 1ec5361d4c570444191a8e877cfc8c85a08732440cd3b824357bed3dcd85446f
50 rdf:type schema:PropertyValue
51 N8355e3a9846047b6a82f210a51f52699 rdf:first sg:person.013154315266.38
52 rdf:rest N0ac2ea57612d4f38b330f47fa11b335c
53 N8fc0a8abe76043348856135de1cbff83 schema:issueNumber 6
54 rdf:type schema:PublicationIssue
55 Na9fce025eef6437c81e60b31e0ce2280 schema:name INRIA-ENS, 45 rue d'Ulm, 75005, Paris, France
56 rdf:type schema:Organization
57 Ndc38445f87e94b49b2a80abb928a4428 rdf:first sg:person.013374336621.69
58 rdf:rest N8355e3a9846047b6a82f210a51f52699
59 Ne3bb954341c240638dd5b0d619141468 schema:name Springer Nature - SN SciGraph project
60 rdf:type schema:Organization
61 Ne6a577b8818543eea2fa60b29f081307 schema:name doi
62 schema:value 10.1023/a:1020321501945
63 rdf:type schema:PropertyValue
64 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
65 schema:name Mathematical Sciences
66 rdf:type schema:DefinedTerm
67 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
68 schema:name Statistics
69 rdf:type schema:DefinedTerm
70 sg:journal.1327893 schema:issn 1022-0038
71 1572-8196
72 schema:name Wireless Networks
73 rdf:type schema:Periodical
74 sg:person.011221417677.05 schema:affiliation https://www.grid.ac/institutes/grid.5607.4
75 schema:familyName Tournois
76 schema:givenName Florent
77 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011221417677.05
78 rdf:type schema:Person
79 sg:person.013154315266.38 schema:affiliation N461c7dae0e6f40daae605f793c12ed8e
80 schema:familyName Błaszczyszyn
81 schema:givenName Bartłomiej
82 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013154315266.38
83 rdf:type schema:Person
84 sg:person.013374336621.69 schema:affiliation Na9fce025eef6437c81e60b31e0ce2280
85 schema:familyName Baccelli
86 schema:givenName François
87 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013374336621.69
88 rdf:type schema:Person
89 https://doi.org/10.1002/(sici)1098-2418(199608/09)9:1/2<223::aid-rsa14>3.0.co;2-o schema:sameAs https://app.dimensions.ai/details/publication/pub.1033977441
90 rdf:type schema:CreativeWork
91 https://doi.org/10.1002/mana.19941680109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026511467
92 rdf:type schema:CreativeWork
93 https://doi.org/10.1016/s0031-3203(99)00021-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022570245
94 rdf:type schema:CreativeWork
95 https://doi.org/10.1017/s0001867800010806 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007776595
96 rdf:type schema:CreativeWork
97 https://doi.org/10.1017/s0001867800015378 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039666431
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1109/18.335940 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061099402
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1109/18.782121 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061101059
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1109/18.825799 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061101255
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1109/25.790518 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061135214
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1109/49.232298 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061176870
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1109/comst.1998.5340404 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061258070
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1137/s1064827594268725 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062884213
112 rdf:type schema:CreativeWork
113 https://www.grid.ac/institutes/grid.5607.4 schema:alternateName École Normale Supérieure
114 schema:name École Normale Supérieure, 45 rue d'Ulm, 75005, Paris, France
115 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...