On the Finiteness of the Discrete Spectrum of a Four-Particle Lattice Schrödinger Operator View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2002-07

AUTHORS

S. Albeverio, S. N. Lakaev, J. I. Abdullaev

ABSTRACT

A Hamiltonian describing four bosons that move on a lattice and interact by means of pair zero-range attractive potentials is considered. A stronger version of the Hunziker–Van Vinter–Zhislin theorem on the essential spectrum is established. It is proved that the set of eigenvalues lying to the left of the essential spectrum is finite for any interaction energy of two bosons and is empty if this energy is sufficiently small. More... »

PAGES

212-216

Identifiers

URI

http://scigraph.springernature.com/pub.10.1023/a:1020226321856

DOI

http://dx.doi.org/10.1023/a:1020226321856

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1017617854


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "familyName": "Albeverio", 
        "givenName": "S.", 
        "id": "sg:person.013225753544.27", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013225753544.27"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Lakaev", 
        "givenName": "S. N.", 
        "id": "sg:person.014651603551.32", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014651603551.32"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Abdullaev", 
        "givenName": "J. I.", 
        "id": "sg:person.07514333275.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07514333275.01"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2002-07", 
    "datePublishedReg": "2002-07-01", 
    "description": "A Hamiltonian describing four bosons that move on a lattice and interact by means of pair zero-range attractive potentials is considered. A stronger version of the Hunziker\u2013Van Vinter\u2013Zhislin theorem on the essential spectrum is established. It is proved that the set of eigenvalues lying to the left of the essential spectrum is finite for any interaction energy of two bosons and is empty if this energy is sufficiently small.", 
    "genre": "article", 
    "id": "sg:pub.10.1023/a:1020226321856", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136154", 
        "issn": [
          "0016-2663", 
          "2305-2899"
        ], 
        "name": "Functional Analysis and Its Applications", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "36"
      }
    ], 
    "keywords": [
      "essential spectrum", 
      "set of eigenvalues", 
      "zero-range attractive potentials", 
      "lattice Schr\u00f6dinger operators", 
      "Schr\u00f6dinger operators", 
      "means of pairs", 
      "discrete spectrum", 
      "strong version", 
      "Vinter", 
      "theorem", 
      "eigenvalues", 
      "operators", 
      "finiteness", 
      "bosons", 
      "version", 
      "set", 
      "lattice", 
      "attractive potential", 
      "means", 
      "pairs", 
      "energy", 
      "spectra", 
      "potential", 
      "left", 
      "interaction energy", 
      "Hunziker\u2013Van Vinter", 
      "Zhislin theorem", 
      "Four-Particle Lattice Schr\u00f6dinger Operator"
    ], 
    "name": "On the Finiteness of the Discrete Spectrum of a Four-Particle Lattice Schr\u00f6dinger Operator", 
    "pagination": "212-216", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1017617854"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1023/a:1020226321856"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1023/a:1020226321856", 
      "https://app.dimensions.ai/details/publication/pub.1017617854"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T18:11", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_356.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1023/a:1020226321856"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1023/a:1020226321856'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1023/a:1020226321856'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1023/a:1020226321856'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1023/a:1020226321856'


 

This table displays all metadata directly associated to this object as RDF triples.

94 TRIPLES      21 PREDICATES      54 URIs      46 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1023/a:1020226321856 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N9b7662c368ed46b8a2b386d274970805
4 schema:datePublished 2002-07
5 schema:datePublishedReg 2002-07-01
6 schema:description A Hamiltonian describing four bosons that move on a lattice and interact by means of pair zero-range attractive potentials is considered. A stronger version of the Hunziker–Van Vinter–Zhislin theorem on the essential spectrum is established. It is proved that the set of eigenvalues lying to the left of the essential spectrum is finite for any interaction energy of two bosons and is empty if this energy is sufficiently small.
7 schema:genre article
8 schema:inLanguage en
9 schema:isAccessibleForFree false
10 schema:isPartOf N0f376f10b56744158a3eb914113c7f39
11 Ncaa6a8ecb47e404b8ac2e922793ae97c
12 sg:journal.1136154
13 schema:keywords Four-Particle Lattice Schrödinger Operator
14 Hunziker–Van Vinter
15 Schrödinger operators
16 Vinter
17 Zhislin theorem
18 attractive potential
19 bosons
20 discrete spectrum
21 eigenvalues
22 energy
23 essential spectrum
24 finiteness
25 interaction energy
26 lattice
27 lattice Schrödinger operators
28 left
29 means
30 means of pairs
31 operators
32 pairs
33 potential
34 set
35 set of eigenvalues
36 spectra
37 strong version
38 theorem
39 version
40 zero-range attractive potentials
41 schema:name On the Finiteness of the Discrete Spectrum of a Four-Particle Lattice Schrödinger Operator
42 schema:pagination 212-216
43 schema:productId N5ab5d119eb594a328cf1387e6d78cdc5
44 N7c259d9bb28a4e0a949bb19408e3f5c8
45 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017617854
46 https://doi.org/10.1023/a:1020226321856
47 schema:sdDatePublished 2022-01-01T18:11
48 schema:sdLicense https://scigraph.springernature.com/explorer/license/
49 schema:sdPublisher N4328b5fc68a346d18c8a732ad3863584
50 schema:url https://doi.org/10.1023/a:1020226321856
51 sgo:license sg:explorer/license/
52 sgo:sdDataset articles
53 rdf:type schema:ScholarlyArticle
54 N0f376f10b56744158a3eb914113c7f39 schema:volumeNumber 36
55 rdf:type schema:PublicationVolume
56 N4328b5fc68a346d18c8a732ad3863584 schema:name Springer Nature - SN SciGraph project
57 rdf:type schema:Organization
58 N5aa58b373e794e64bbe61e7bba273200 rdf:first sg:person.07514333275.01
59 rdf:rest rdf:nil
60 N5ab5d119eb594a328cf1387e6d78cdc5 schema:name dimensions_id
61 schema:value pub.1017617854
62 rdf:type schema:PropertyValue
63 N7c259d9bb28a4e0a949bb19408e3f5c8 schema:name doi
64 schema:value 10.1023/a:1020226321856
65 rdf:type schema:PropertyValue
66 N9b7662c368ed46b8a2b386d274970805 rdf:first sg:person.013225753544.27
67 rdf:rest Nad7eb8a488454ac1a4a0bcbba461340d
68 Nad7eb8a488454ac1a4a0bcbba461340d rdf:first sg:person.014651603551.32
69 rdf:rest N5aa58b373e794e64bbe61e7bba273200
70 Ncaa6a8ecb47e404b8ac2e922793ae97c schema:issueNumber 3
71 rdf:type schema:PublicationIssue
72 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
73 schema:name Mathematical Sciences
74 rdf:type schema:DefinedTerm
75 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
76 schema:name Pure Mathematics
77 rdf:type schema:DefinedTerm
78 sg:journal.1136154 schema:issn 0016-2663
79 2305-2899
80 schema:name Functional Analysis and Its Applications
81 schema:publisher Springer Nature
82 rdf:type schema:Periodical
83 sg:person.013225753544.27 schema:familyName Albeverio
84 schema:givenName S.
85 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013225753544.27
86 rdf:type schema:Person
87 sg:person.014651603551.32 schema:familyName Lakaev
88 schema:givenName S. N.
89 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014651603551.32
90 rdf:type schema:Person
91 sg:person.07514333275.01 schema:familyName Abdullaev
92 schema:givenName J. I.
93 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07514333275.01
94 rdf:type schema:Person
 




Preview window. Press ESC to close (or click here)


...