On the Relationship Between Fast Lyapunov Indicator and Periodic Orbits for Continuous Flows View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2002-05

AUTHORS

Marc Fouchard, Elena Lega, Christiane Froeschlé, Claude Froeschlé

ABSTRACT

It is already known (Froeschlé et al., 1997a) that the fast Lyapunov indicator (hereafter FLI), i.e. the computation on a relatively short time of a quantity related to the largest Lyapunov indicator, allows us to discriminate between ordered and weak chaotic motion. Using the FLI many results have been obtained on the standard map taken as a model problem. On this model we are not only able to discriminate between a short time weak chaotic motion and an ordered one, but also among regular motion between non resonant and resonant orbits. Moreover, periodic orbits are characterised by constant FLI values which appear to be related to the order of periodic orbits (Lega and Froeschlé, 2001). In the present paper we extend all these results to the case of continuous dynamical systems (the Hénon and Heiles system and the restricted three-body problem). Especially for the periodic orbits we need to introduce a new value: the orthogonal FLI in order to fully recover the results obtained for mappings. More... »

PAGES

205-222

Identifiers

URI

http://scigraph.springernature.com/pub.10.1023/a:1020199201070

DOI

http://dx.doi.org/10.1023/a:1020199201070

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1039120538


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Observatoire de Nice, Bv. de l'Observatoire, B.P. 4229, 06304, Nice cedex 4, France", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Observatoire de Nice, Bv. de l'Observatoire, B.P. 4229, 06304, Nice cedex 4, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fouchard", 
        "givenName": "Marc", 
        "id": "sg:person.015127714775.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015127714775.16"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Observatoire de Nice, Bv. de l'Observatoire, B.P. 4229, 06304, Nice cedex 4, France", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Observatoire de Nice, Bv. de l'Observatoire, B.P. 4229, 06304, Nice cedex 4, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lega", 
        "givenName": "Elena", 
        "id": "sg:person.01277026214.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01277026214.42"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Observatoire de Nice, Bv. de l'Observatoire, B.P. 4229, 06304, Nice cedex 4, France", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Observatoire de Nice, Bv. de l'Observatoire, B.P. 4229, 06304, Nice cedex 4, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Froeschl\u00e9", 
        "givenName": "Christiane", 
        "id": "sg:person.013202724547.45", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013202724547.45"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Observatoire de Nice, Bv. de l'Observatoire, B.P. 4229, 06304, Nice cedex 4, France", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Observatoire de Nice, Bv. de l'Observatoire, B.P. 4229, 06304, Nice cedex 4, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Froeschl\u00e9", 
        "givenName": "Claude", 
        "id": "sg:person.014053526143.20", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014053526143.20"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf02128236", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053281450", 
          "https://doi.org/10.1007/bf02128236"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1008276418601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017960369", 
          "https://doi.org/10.1023/a:1008276418601"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1011141018230", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044287870", 
          "https://doi.org/10.1023/a:1011141018230"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1013323507265", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038434429", 
          "https://doi.org/10.1023/a:1013323507265"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2002-05", 
    "datePublishedReg": "2002-05-01", 
    "description": "It is already known (Froeschl\u00e9 et al., 1997a) that the fast Lyapunov indicator (hereafter FLI), i.e. the computation on a relatively short time of a quantity related to the largest Lyapunov indicator, allows us to discriminate between ordered and weak chaotic motion. Using the FLI many results have been obtained on the standard map taken as a model problem. On this model we are not only able to discriminate between a short time weak chaotic motion and an ordered one, but also among regular motion between non resonant and resonant orbits. Moreover, periodic orbits are characterised by constant FLI values which appear to be related to the order of periodic orbits (Lega and Froeschl\u00e9, 2001). In the present paper we extend all these results to the case of continuous dynamical systems (the H\u00e9non and Heiles system and the restricted three-body problem). Especially for the periodic orbits we need to introduce a new value: the orthogonal FLI in order to fully recover the results obtained for mappings.", 
    "genre": "article", 
    "id": "sg:pub.10.1023/a:1020199201070", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136436", 
        "issn": [
          "0923-2958", 
          "1572-9478"
        ], 
        "name": "Celestial Mechanics and Dynamical Astronomy", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1-4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "83"
      }
    ], 
    "keywords": [
      "weak chaotic motion", 
      "Fast Lyapunov Indicator", 
      "Lyapunov Indicator", 
      "periodic orbits", 
      "chaotic motion", 
      "continuous dynamical systems", 
      "dynamical systems", 
      "model problem", 
      "regular motion", 
      "standard map", 
      "resonant orbits", 
      "orbit", 
      "motion", 
      "present paper", 
      "computation", 
      "problem", 
      "order", 
      "FLI values", 
      "flow", 
      "model", 
      "results", 
      "quantity", 
      "continuous flow", 
      "short time", 
      "new values", 
      "system", 
      "values", 
      "maps", 
      "mapping", 
      "cases", 
      "time", 
      "indicators", 
      "relationship", 
      "FLI", 
      "paper"
    ], 
    "name": "On the Relationship Between Fast Lyapunov Indicator and Periodic Orbits for Continuous Flows", 
    "pagination": "205-222", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1039120538"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1023/a:1020199201070"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1023/a:1020199201070", 
      "https://app.dimensions.ai/details/publication/pub.1039120538"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-05-10T09:53", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/article/article_356.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1023/a:1020199201070"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1023/a:1020199201070'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1023/a:1020199201070'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1023/a:1020199201070'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1023/a:1020199201070'


 

This table displays all metadata directly associated to this object as RDF triples.

130 TRIPLES      22 PREDICATES      65 URIs      53 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1023/a:1020199201070 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N83c371221ec4417abed2e21e52cb8655
4 schema:citation sg:pub.10.1007/bf02128236
5 sg:pub.10.1023/a:1008276418601
6 sg:pub.10.1023/a:1011141018230
7 sg:pub.10.1023/a:1013323507265
8 schema:datePublished 2002-05
9 schema:datePublishedReg 2002-05-01
10 schema:description It is already known (Froeschlé et al., 1997a) that the fast Lyapunov indicator (hereafter FLI), i.e. the computation on a relatively short time of a quantity related to the largest Lyapunov indicator, allows us to discriminate between ordered and weak chaotic motion. Using the FLI many results have been obtained on the standard map taken as a model problem. On this model we are not only able to discriminate between a short time weak chaotic motion and an ordered one, but also among regular motion between non resonant and resonant orbits. Moreover, periodic orbits are characterised by constant FLI values which appear to be related to the order of periodic orbits (Lega and Froeschlé, 2001). In the present paper we extend all these results to the case of continuous dynamical systems (the Hénon and Heiles system and the restricted three-body problem). Especially for the periodic orbits we need to introduce a new value: the orthogonal FLI in order to fully recover the results obtained for mappings.
11 schema:genre article
12 schema:inLanguage en
13 schema:isAccessibleForFree false
14 schema:isPartOf N04710fc9e8f041d08a669af9bd261b5b
15 Nb2d61761afe6452092f1d8f9aebd83f6
16 sg:journal.1136436
17 schema:keywords FLI
18 FLI values
19 Fast Lyapunov Indicator
20 Lyapunov Indicator
21 cases
22 chaotic motion
23 computation
24 continuous dynamical systems
25 continuous flow
26 dynamical systems
27 flow
28 indicators
29 mapping
30 maps
31 model
32 model problem
33 motion
34 new values
35 orbit
36 order
37 paper
38 periodic orbits
39 present paper
40 problem
41 quantity
42 regular motion
43 relationship
44 resonant orbits
45 results
46 short time
47 standard map
48 system
49 time
50 values
51 weak chaotic motion
52 schema:name On the Relationship Between Fast Lyapunov Indicator and Periodic Orbits for Continuous Flows
53 schema:pagination 205-222
54 schema:productId N2ad5fc41548d4025963b65f7669f59c6
55 N4150fbf20cc54e1597026a88c87c6ade
56 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039120538
57 https://doi.org/10.1023/a:1020199201070
58 schema:sdDatePublished 2022-05-10T09:53
59 schema:sdLicense https://scigraph.springernature.com/explorer/license/
60 schema:sdPublisher N0b83c95298f34cd08b25f6da002cf5bd
61 schema:url https://doi.org/10.1023/a:1020199201070
62 sgo:license sg:explorer/license/
63 sgo:sdDataset articles
64 rdf:type schema:ScholarlyArticle
65 N04710fc9e8f041d08a669af9bd261b5b schema:volumeNumber 83
66 rdf:type schema:PublicationVolume
67 N07c34d536b9347a884a24c583e7ce7dc rdf:first sg:person.013202724547.45
68 rdf:rest Nd12796df57e34330acba8e758ec44c66
69 N0b83c95298f34cd08b25f6da002cf5bd schema:name Springer Nature - SN SciGraph project
70 rdf:type schema:Organization
71 N2a38d9b700b049e9ae659ece478c98e1 rdf:first sg:person.01277026214.42
72 rdf:rest N07c34d536b9347a884a24c583e7ce7dc
73 N2ad5fc41548d4025963b65f7669f59c6 schema:name doi
74 schema:value 10.1023/a:1020199201070
75 rdf:type schema:PropertyValue
76 N4150fbf20cc54e1597026a88c87c6ade schema:name dimensions_id
77 schema:value pub.1039120538
78 rdf:type schema:PropertyValue
79 N83c371221ec4417abed2e21e52cb8655 rdf:first sg:person.015127714775.16
80 rdf:rest N2a38d9b700b049e9ae659ece478c98e1
81 Nb2d61761afe6452092f1d8f9aebd83f6 schema:issueNumber 1-4
82 rdf:type schema:PublicationIssue
83 Nd12796df57e34330acba8e758ec44c66 rdf:first sg:person.014053526143.20
84 rdf:rest rdf:nil
85 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
86 schema:name Mathematical Sciences
87 rdf:type schema:DefinedTerm
88 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
89 schema:name Pure Mathematics
90 rdf:type schema:DefinedTerm
91 sg:journal.1136436 schema:issn 0923-2958
92 1572-9478
93 schema:name Celestial Mechanics and Dynamical Astronomy
94 schema:publisher Springer Nature
95 rdf:type schema:Periodical
96 sg:person.01277026214.42 schema:affiliation grid-institutes:None
97 schema:familyName Lega
98 schema:givenName Elena
99 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01277026214.42
100 rdf:type schema:Person
101 sg:person.013202724547.45 schema:affiliation grid-institutes:None
102 schema:familyName Froeschlé
103 schema:givenName Christiane
104 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013202724547.45
105 rdf:type schema:Person
106 sg:person.014053526143.20 schema:affiliation grid-institutes:None
107 schema:familyName Froeschlé
108 schema:givenName Claude
109 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014053526143.20
110 rdf:type schema:Person
111 sg:person.015127714775.16 schema:affiliation grid-institutes:None
112 schema:familyName Fouchard
113 schema:givenName Marc
114 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015127714775.16
115 rdf:type schema:Person
116 sg:pub.10.1007/bf02128236 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053281450
117 https://doi.org/10.1007/bf02128236
118 rdf:type schema:CreativeWork
119 sg:pub.10.1023/a:1008276418601 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017960369
120 https://doi.org/10.1023/a:1008276418601
121 rdf:type schema:CreativeWork
122 sg:pub.10.1023/a:1011141018230 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044287870
123 https://doi.org/10.1023/a:1011141018230
124 rdf:type schema:CreativeWork
125 sg:pub.10.1023/a:1013323507265 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038434429
126 https://doi.org/10.1023/a:1013323507265
127 rdf:type schema:CreativeWork
128 grid-institutes:None schema:alternateName Observatoire de Nice, Bv. de l'Observatoire, B.P. 4229, 06304, Nice cedex 4, France
129 schema:name Observatoire de Nice, Bv. de l'Observatoire, B.P. 4229, 06304, Nice cedex 4, France
130 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...