Analysis of finite-buffer multi-server queues with group arrivals: GIX/M/c/N View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2000-11

AUTHORS

P. Vijaya Laxmi, U.C. Gupta

ABSTRACT

In this paper, we analyse a multi-server queue with bulk arrivals and finite-buffer space. The interarrival and service times are arbitrarily and exponentially distributed, respectively. The model is discussed with partial and total batch rejections and the distributions of the numbers of customers in the system at prearrival and arbitrary epochs are obtained. In addition, blocking probabilities and waiting time analyses of the first, an arbitrary and the last customer of a batch are discussed. Finally, some numerical results are presented. More... »

PAGES

125-140

References to SciGraph publications

  • 1994-03. Analysis of the GIX/M/c model in QUEUEING SYSTEMS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1023/a:1019179119172

    DOI

    http://dx.doi.org/10.1023/a:1019179119172

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1032117743


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0802", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Computation Theory and Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "familyName": "Vijaya Laxmi", 
            "givenName": "P.", 
            "id": "sg:person.07416436705.21", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07416436705.21"
            ], 
            "type": "Person"
          }, 
          {
            "familyName": "Gupta", 
            "givenName": "U.C.", 
            "id": "sg:person.011323710421.18", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011323710421.18"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/0377-2217(89)90467-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007309462"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0377-2217(89)90467-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007309462"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0167-6377(84)90072-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030027126"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0167-6377(84)90072-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030027126"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01189245", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030903153", 
              "https://doi.org/10.1007/bf01189245"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01189245", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030903153", 
              "https://doi.org/10.1007/bf01189245"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0377-2217(81)90259-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043562961"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0377-2217(81)90259-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043562961"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tcom.1982.1095495", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061553359"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2307/3212728", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1070226931"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.15807/jorsj.27.260", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1090375536"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2000-11", 
        "datePublishedReg": "2000-11-01", 
        "description": "In this paper, we analyse a multi-server queue with bulk arrivals and finite-buffer space. The interarrival and service times are arbitrarily and exponentially distributed, respectively. The model is discussed with partial and total batch rejections and the distributions of the numbers of customers in the system at prearrival and arbitrary epochs are obtained. In addition, blocking probabilities and waiting time analyses of the first, an arbitrary and the last customer of a batch are discussed. Finally, some numerical results are presented.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1023/a:1019179119172", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1048269", 
            "issn": [
              "0257-0130", 
              "1572-9443"
            ], 
            "name": "Queueing Systems", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1-3", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "36"
          }
        ], 
        "name": "Analysis of finite-buffer multi-server queues with group arrivals: GIX/M/c/N", 
        "pagination": "125-140", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "9900d329e7de8e59614142af13403b788096137db7702827b7801d572fe54580"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1023/a:1019179119172"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1032117743"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1023/a:1019179119172", 
          "https://app.dimensions.ai/details/publication/pub.1032117743"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T15:56", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8664_00000537.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1023%2FA%3A1019179119172"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1023/a:1019179119172'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1023/a:1019179119172'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1023/a:1019179119172'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1023/a:1019179119172'


     

    This table displays all metadata directly associated to this object as RDF triples.

    85 TRIPLES      21 PREDICATES      34 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1023/a:1019179119172 schema:about anzsrc-for:08
    2 anzsrc-for:0802
    3 schema:author N41efd325c55847af9508a16d3ae63a63
    4 schema:citation sg:pub.10.1007/bf01189245
    5 https://doi.org/10.1016/0167-6377(84)90072-5
    6 https://doi.org/10.1016/0377-2217(81)90259-9
    7 https://doi.org/10.1016/0377-2217(89)90467-0
    8 https://doi.org/10.1109/tcom.1982.1095495
    9 https://doi.org/10.15807/jorsj.27.260
    10 https://doi.org/10.2307/3212728
    11 schema:datePublished 2000-11
    12 schema:datePublishedReg 2000-11-01
    13 schema:description In this paper, we analyse a multi-server queue with bulk arrivals and finite-buffer space. The interarrival and service times are arbitrarily and exponentially distributed, respectively. The model is discussed with partial and total batch rejections and the distributions of the numbers of customers in the system at prearrival and arbitrary epochs are obtained. In addition, blocking probabilities and waiting time analyses of the first, an arbitrary and the last customer of a batch are discussed. Finally, some numerical results are presented.
    14 schema:genre research_article
    15 schema:inLanguage en
    16 schema:isAccessibleForFree false
    17 schema:isPartOf N42d0528dede1446d8511ca264d14b2a6
    18 N49892a7413f045389eb23de74565a69a
    19 sg:journal.1048269
    20 schema:name Analysis of finite-buffer multi-server queues with group arrivals: GIX/M/c/N
    21 schema:pagination 125-140
    22 schema:productId N4f8007d660984ed88c1d4799e5aaae76
    23 N55eb91f553754a12b5f975cab5ce4e54
    24 N605f4f4ea095462bbf47ffc5cf9a9d5d
    25 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032117743
    26 https://doi.org/10.1023/a:1019179119172
    27 schema:sdDatePublished 2019-04-10T15:56
    28 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    29 schema:sdPublisher N77274de1cc7e4f6586fc7aa9728c0585
    30 schema:url http://link.springer.com/10.1023%2FA%3A1019179119172
    31 sgo:license sg:explorer/license/
    32 sgo:sdDataset articles
    33 rdf:type schema:ScholarlyArticle
    34 N3426a9e32a444482b009a63bdeae440d rdf:first sg:person.011323710421.18
    35 rdf:rest rdf:nil
    36 N41efd325c55847af9508a16d3ae63a63 rdf:first sg:person.07416436705.21
    37 rdf:rest N3426a9e32a444482b009a63bdeae440d
    38 N42d0528dede1446d8511ca264d14b2a6 schema:issueNumber 1-3
    39 rdf:type schema:PublicationIssue
    40 N49892a7413f045389eb23de74565a69a schema:volumeNumber 36
    41 rdf:type schema:PublicationVolume
    42 N4f8007d660984ed88c1d4799e5aaae76 schema:name doi
    43 schema:value 10.1023/a:1019179119172
    44 rdf:type schema:PropertyValue
    45 N55eb91f553754a12b5f975cab5ce4e54 schema:name readcube_id
    46 schema:value 9900d329e7de8e59614142af13403b788096137db7702827b7801d572fe54580
    47 rdf:type schema:PropertyValue
    48 N605f4f4ea095462bbf47ffc5cf9a9d5d schema:name dimensions_id
    49 schema:value pub.1032117743
    50 rdf:type schema:PropertyValue
    51 N77274de1cc7e4f6586fc7aa9728c0585 schema:name Springer Nature - SN SciGraph project
    52 rdf:type schema:Organization
    53 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    54 schema:name Information and Computing Sciences
    55 rdf:type schema:DefinedTerm
    56 anzsrc-for:0802 schema:inDefinedTermSet anzsrc-for:
    57 schema:name Computation Theory and Mathematics
    58 rdf:type schema:DefinedTerm
    59 sg:journal.1048269 schema:issn 0257-0130
    60 1572-9443
    61 schema:name Queueing Systems
    62 rdf:type schema:Periodical
    63 sg:person.011323710421.18 schema:familyName Gupta
    64 schema:givenName U.C.
    65 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011323710421.18
    66 rdf:type schema:Person
    67 sg:person.07416436705.21 schema:familyName Vijaya Laxmi
    68 schema:givenName P.
    69 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07416436705.21
    70 rdf:type schema:Person
    71 sg:pub.10.1007/bf01189245 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030903153
    72 https://doi.org/10.1007/bf01189245
    73 rdf:type schema:CreativeWork
    74 https://doi.org/10.1016/0167-6377(84)90072-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030027126
    75 rdf:type schema:CreativeWork
    76 https://doi.org/10.1016/0377-2217(81)90259-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043562961
    77 rdf:type schema:CreativeWork
    78 https://doi.org/10.1016/0377-2217(89)90467-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007309462
    79 rdf:type schema:CreativeWork
    80 https://doi.org/10.1109/tcom.1982.1095495 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061553359
    81 rdf:type schema:CreativeWork
    82 https://doi.org/10.15807/jorsj.27.260 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090375536
    83 rdf:type schema:CreativeWork
    84 https://doi.org/10.2307/3212728 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070226931
    85 rdf:type schema:CreativeWork
     




    Preview window. Press ESC to close (or click here)


    ...