Ontology type: schema:ScholarlyArticle
1997-11
AUTHORSFrançois Baccelli, Sven Hasenfuss, Volker Schmidt
ABSTRACTWe consider a certain class of vectorial evolution equations, which are linear in the (max,+) semi-field. They can be used to model several Types of discrete event systems, in particular queueing networks where we assume that the arrival process of customers (tokens, jobs, etc.) is Poisson. Under natural Cramér Type conditions on certain variables, we show that the expected waiting time which the nth customer has to spend in a given subarea of such a system can be expanded analytically in an infinite power series with respect to the arrival intensity λ. Furthermore, we state an algorithm for computing all coefficients of this series expansion and derive an explicit finite representation formula for the remainder term. We also give an explicit finite expansion for expected stationary waiting times in (max,+)-linear systems with deterministic queueing services. More... »
PAGES301-342
http://scigraph.springernature.com/pub.10.1023/a:1019141510202
DOIhttp://dx.doi.org/10.1023/a:1019141510202
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1014272318
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Pure Mathematics",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Mathematical Sciences",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"name": [
"INRIA Sophia Antipolis, 2004, Route des Lucioles, B.P.93, F-06902, Sophia Antipolis Cedex, France"
],
"type": "Organization"
},
"familyName": "Baccelli",
"givenName": "Fran\u00e7ois",
"id": "sg:person.013374336621.69",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013374336621.69"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "University of Ulm",
"id": "https://www.grid.ac/institutes/grid.6582.9",
"name": [
"Abteilung Stochastik, Universit\u00e4t Ulm, Helmholtzstr. 18, D-89069, Ulm, Germany"
],
"type": "Organization"
},
"familyName": "Hasenfuss",
"givenName": "Sven",
"id": "sg:person.016371221301.89",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016371221301.89"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "University of Ulm",
"id": "https://www.grid.ac/institutes/grid.6582.9",
"name": [
"Abteilung Stochastik, Universit\u00e4t Ulm, Helmholtzstr. 18, D-89069, Ulm, Germany"
],
"type": "Organization"
},
"familyName": "Schmidt",
"givenName": "Volker",
"id": "sg:person.01051347101.48",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01051347101.48"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/bf01148940",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1052808197",
"https://doi.org/10.1007/bf01148940"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf01148940",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1052808197",
"https://doi.org/10.1007/bf01148940"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1214/aoap/1034968069",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1064397710"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1287/moor.14.1.26",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1064723375"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1287/opre.36.3.454",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1064729922"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1287/opre.44.5.810",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1064730898"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.2307/1427478",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1069490443"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.2307/3214521",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1070228676"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.2307/3214801",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1070228953"
],
"type": "CreativeWork"
}
],
"datePublished": "1997-11",
"datePublishedReg": "1997-11-01",
"description": "We consider a certain class of vectorial evolution equations, which are linear in the (max,+) semi-field. They can be used to model several Types of discrete event systems, in particular queueing networks where we assume that the arrival process of customers (tokens, jobs, etc.) is Poisson. Under natural Cram\u00e9r Type conditions on certain variables, we show that the expected waiting time which the nth customer has to spend in a given subarea of such a system can be expanded analytically in an infinite power series with respect to the arrival intensity \u03bb. Furthermore, we state an algorithm for computing all coefficients of this series expansion and derive an explicit finite representation formula for the remainder term. We also give an explicit finite expansion for expected stationary waiting times in (max,+)-linear systems with deterministic queueing services.",
"genre": "research_article",
"id": "sg:pub.10.1023/a:1019141510202",
"inLanguage": [
"en"
],
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1048269",
"issn": [
"0257-0130",
"1572-9443"
],
"name": "Queueing Systems",
"type": "Periodical"
},
{
"issueNumber": "3-4",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "26"
}
],
"name": "Transient and stationary waiting times in (max,+)-linear systems with Poisson input",
"pagination": "301-342",
"productId": [
{
"name": "readcube_id",
"type": "PropertyValue",
"value": [
"43fdd5620451b9180557f1afc1e84126333b981fd1a035bfb6c4c6536fa6117d"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1023/a:1019141510202"
]
},
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1014272318"
]
}
],
"sameAs": [
"https://doi.org/10.1023/a:1019141510202",
"https://app.dimensions.ai/details/publication/pub.1014272318"
],
"sdDataset": "articles",
"sdDatePublished": "2019-04-10T19:13",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8678_00000536.jsonl",
"type": "ScholarlyArticle",
"url": "http://link.springer.com/10.1023%2FA%3A1019141510202"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1023/a:1019141510202'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1023/a:1019141510202'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1023/a:1019141510202'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1023/a:1019141510202'
This table displays all metadata directly associated to this object as RDF triples.
102 TRIPLES
21 PREDICATES
35 URIs
19 LITERALS
7 BLANK NODES