Transient and stationary waiting times in (max,+)-linear systems with Poisson input View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1997-11

AUTHORS

François Baccelli, Sven Hasenfuss, Volker Schmidt

ABSTRACT

We consider a certain class of vectorial evolution equations, which are linear in the (max,+) semi-field. They can be used to model several Types of discrete event systems, in particular queueing networks where we assume that the arrival process of customers (tokens, jobs, etc.) is Poisson. Under natural Cramér Type conditions on certain variables, we show that the expected waiting time which the nth customer has to spend in a given subarea of such a system can be expanded analytically in an infinite power series with respect to the arrival intensity λ. Furthermore, we state an algorithm for computing all coefficients of this series expansion and derive an explicit finite representation formula for the remainder term. We also give an explicit finite expansion for expected stationary waiting times in (max,+)-linear systems with deterministic queueing services. More... »

PAGES

301-342

References to SciGraph publications

Journal

TITLE

Queueing Systems

ISSUE

3-4

VOLUME

26

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1023/a:1019141510202

DOI

http://dx.doi.org/10.1023/a:1019141510202

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1014272318


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "INRIA Sophia Antipolis, 2004, Route des Lucioles, B.P.93, F-06902, Sophia Antipolis Cedex, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Baccelli", 
        "givenName": "Fran\u00e7ois", 
        "id": "sg:person.013374336621.69", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013374336621.69"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Ulm", 
          "id": "https://www.grid.ac/institutes/grid.6582.9", 
          "name": [
            "Abteilung Stochastik, Universit\u00e4t Ulm, Helmholtzstr. 18, D-89069, Ulm, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hasenfuss", 
        "givenName": "Sven", 
        "id": "sg:person.016371221301.89", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016371221301.89"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Ulm", 
          "id": "https://www.grid.ac/institutes/grid.6582.9", 
          "name": [
            "Abteilung Stochastik, Universit\u00e4t Ulm, Helmholtzstr. 18, D-89069, Ulm, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Schmidt", 
        "givenName": "Volker", 
        "id": "sg:person.01051347101.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01051347101.48"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf01148940", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052808197", 
          "https://doi.org/10.1007/bf01148940"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01148940", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052808197", 
          "https://doi.org/10.1007/bf01148940"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/aoap/1034968069", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064397710"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1287/moor.14.1.26", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064723375"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1287/opre.36.3.454", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064729922"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1287/opre.44.5.810", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064730898"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/1427478", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069490443"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/3214521", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070228676"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/3214801", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070228953"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1997-11", 
    "datePublishedReg": "1997-11-01", 
    "description": "We consider a certain class of vectorial evolution equations, which are linear in the (max,+) semi-field. They can be used to model several Types of discrete event systems, in particular queueing networks where we assume that the arrival process of customers (tokens, jobs, etc.) is Poisson. Under natural Cram\u00e9r Type conditions on certain variables, we show that the expected waiting time which the nth customer has to spend in a given subarea of such a system can be expanded analytically in an infinite power series with respect to the arrival intensity \u03bb. Furthermore, we state an algorithm for computing all coefficients of this series expansion and derive an explicit finite representation formula for the remainder term. We also give an explicit finite expansion for expected stationary waiting times in (max,+)-linear systems with deterministic queueing services.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1023/a:1019141510202", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1048269", 
        "issn": [
          "0257-0130", 
          "1572-9443"
        ], 
        "name": "Queueing Systems", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3-4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "26"
      }
    ], 
    "name": "Transient and stationary waiting times in (max,+)-linear systems with Poisson input", 
    "pagination": "301-342", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "43fdd5620451b9180557f1afc1e84126333b981fd1a035bfb6c4c6536fa6117d"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1023/a:1019141510202"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1014272318"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1023/a:1019141510202", 
      "https://app.dimensions.ai/details/publication/pub.1014272318"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T19:13", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8678_00000536.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1023%2FA%3A1019141510202"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1023/a:1019141510202'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1023/a:1019141510202'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1023/a:1019141510202'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1023/a:1019141510202'


 

This table displays all metadata directly associated to this object as RDF triples.

102 TRIPLES      21 PREDICATES      35 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1023/a:1019141510202 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N63e77f8ff14e4376b3db596c22cf8c0e
4 schema:citation sg:pub.10.1007/bf01148940
5 https://doi.org/10.1214/aoap/1034968069
6 https://doi.org/10.1287/moor.14.1.26
7 https://doi.org/10.1287/opre.36.3.454
8 https://doi.org/10.1287/opre.44.5.810
9 https://doi.org/10.2307/1427478
10 https://doi.org/10.2307/3214521
11 https://doi.org/10.2307/3214801
12 schema:datePublished 1997-11
13 schema:datePublishedReg 1997-11-01
14 schema:description We consider a certain class of vectorial evolution equations, which are linear in the (max,+) semi-field. They can be used to model several Types of discrete event systems, in particular queueing networks where we assume that the arrival process of customers (tokens, jobs, etc.) is Poisson. Under natural Cramér Type conditions on certain variables, we show that the expected waiting time which the nth customer has to spend in a given subarea of such a system can be expanded analytically in an infinite power series with respect to the arrival intensity λ. Furthermore, we state an algorithm for computing all coefficients of this series expansion and derive an explicit finite representation formula for the remainder term. We also give an explicit finite expansion for expected stationary waiting times in (max,+)-linear systems with deterministic queueing services.
15 schema:genre research_article
16 schema:inLanguage en
17 schema:isAccessibleForFree false
18 schema:isPartOf N1543097da135414494705df527a819ab
19 Nae360d766b11456ca77c2805a733992c
20 sg:journal.1048269
21 schema:name Transient and stationary waiting times in (max,+)-linear systems with Poisson input
22 schema:pagination 301-342
23 schema:productId Ncd0ab86dc1864b4f90b3094c486943e2
24 Ncde8b5889edb4c3e94e30e700d9fe5c8
25 Ndac6cd3f49bd4a24824d6b2499484e7c
26 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014272318
27 https://doi.org/10.1023/a:1019141510202
28 schema:sdDatePublished 2019-04-10T19:13
29 schema:sdLicense https://scigraph.springernature.com/explorer/license/
30 schema:sdPublisher N31d6c01dceb14bbca58cb6af98c8a461
31 schema:url http://link.springer.com/10.1023%2FA%3A1019141510202
32 sgo:license sg:explorer/license/
33 sgo:sdDataset articles
34 rdf:type schema:ScholarlyArticle
35 N1543097da135414494705df527a819ab schema:volumeNumber 26
36 rdf:type schema:PublicationVolume
37 N24b3546b7be54f8a9cfc60f2488d8bed rdf:first sg:person.01051347101.48
38 rdf:rest rdf:nil
39 N31d6c01dceb14bbca58cb6af98c8a461 schema:name Springer Nature - SN SciGraph project
40 rdf:type schema:Organization
41 N63e77f8ff14e4376b3db596c22cf8c0e rdf:first sg:person.013374336621.69
42 rdf:rest N8de82efa5aef434681b4945a994017c5
43 N66438cada3f641b19895c27fa361672b schema:name INRIA Sophia Antipolis, 2004, Route des Lucioles, B.P.93, F-06902, Sophia Antipolis Cedex, France
44 rdf:type schema:Organization
45 N8de82efa5aef434681b4945a994017c5 rdf:first sg:person.016371221301.89
46 rdf:rest N24b3546b7be54f8a9cfc60f2488d8bed
47 Nae360d766b11456ca77c2805a733992c schema:issueNumber 3-4
48 rdf:type schema:PublicationIssue
49 Ncd0ab86dc1864b4f90b3094c486943e2 schema:name dimensions_id
50 schema:value pub.1014272318
51 rdf:type schema:PropertyValue
52 Ncde8b5889edb4c3e94e30e700d9fe5c8 schema:name doi
53 schema:value 10.1023/a:1019141510202
54 rdf:type schema:PropertyValue
55 Ndac6cd3f49bd4a24824d6b2499484e7c schema:name readcube_id
56 schema:value 43fdd5620451b9180557f1afc1e84126333b981fd1a035bfb6c4c6536fa6117d
57 rdf:type schema:PropertyValue
58 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
59 schema:name Mathematical Sciences
60 rdf:type schema:DefinedTerm
61 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
62 schema:name Pure Mathematics
63 rdf:type schema:DefinedTerm
64 sg:journal.1048269 schema:issn 0257-0130
65 1572-9443
66 schema:name Queueing Systems
67 rdf:type schema:Periodical
68 sg:person.01051347101.48 schema:affiliation https://www.grid.ac/institutes/grid.6582.9
69 schema:familyName Schmidt
70 schema:givenName Volker
71 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01051347101.48
72 rdf:type schema:Person
73 sg:person.013374336621.69 schema:affiliation N66438cada3f641b19895c27fa361672b
74 schema:familyName Baccelli
75 schema:givenName François
76 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013374336621.69
77 rdf:type schema:Person
78 sg:person.016371221301.89 schema:affiliation https://www.grid.ac/institutes/grid.6582.9
79 schema:familyName Hasenfuss
80 schema:givenName Sven
81 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016371221301.89
82 rdf:type schema:Person
83 sg:pub.10.1007/bf01148940 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052808197
84 https://doi.org/10.1007/bf01148940
85 rdf:type schema:CreativeWork
86 https://doi.org/10.1214/aoap/1034968069 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064397710
87 rdf:type schema:CreativeWork
88 https://doi.org/10.1287/moor.14.1.26 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064723375
89 rdf:type schema:CreativeWork
90 https://doi.org/10.1287/opre.36.3.454 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064729922
91 rdf:type schema:CreativeWork
92 https://doi.org/10.1287/opre.44.5.810 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064730898
93 rdf:type schema:CreativeWork
94 https://doi.org/10.2307/1427478 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069490443
95 rdf:type schema:CreativeWork
96 https://doi.org/10.2307/3214521 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070228676
97 rdf:type schema:CreativeWork
98 https://doi.org/10.2307/3214801 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070228953
99 rdf:type schema:CreativeWork
100 https://www.grid.ac/institutes/grid.6582.9 schema:alternateName University of Ulm
101 schema:name Abteilung Stochastik, Universität Ulm, Helmholtzstr. 18, D-89069, Ulm, Germany
102 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...