Climate dynamics and extreme precipitation and flood events in Central Europe View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2000-10

AUTHORS

Christoph Frei, Huw C. Davies, Joachim Gurtz, Christoph Schär

ABSTRACT

Past changes and possible future variations in the nature of extreme precipitation and flood events in Central Europe and the Alpine region are examined from a physical standpoint. An overview is given of the following key contributory physical processes: (1) the variability of the large-scale atmospheric flow and the associated changes of the North-Atlantic storm track; (2) the feedback process between climate warming and the water cycle, and in particular the potential for more frequent heavy precipitation events; and (3) the catchment-scale hydrological processes associated with variations in major river flooding events and that are related to land-use changes, river training measures, and shifts in the proportion of rain to snowfall. In this context an account is provided of the possible future forecasting and warning methodologies based upon high-resolution weather prediction and runoff models. Also consideration is given to the detectability of past (future) changes in observed (modeled) extreme events. It is shown that their rarity and natural fluctuation largely impedes a detection of systematic variations. These effects restrict trend analysis of such events to return periods of below a few months. An illustration using daily precipitation from the Swiss Alps does yield evidence for pronounced trends of intense precipitation events (return period 30 days), while trends of stronger event classes are not detectable (but nevertheless can not be excluded). The small detection probability for extreme events limits possible mitigation of future damage costs through an abatement of climate change alone, and points to the desirability of developing improved early forecasting/warning systems as an additional no-regret strategy. More... »

PAGES

281-300

References to SciGraph publications

  • 1997-04. Variations in seasonal rainfall in Southern Europe during the present century: relationships with the North Atlantic Oscillation and the El Niño-Southern Oscillation in CLIMATE DYNAMICS
  • 1997-09. Changes in daily precipitation under enhanced greenhouse conditions in CLIMATE DYNAMICS
  • 1993-05. Climate change and the regulation of the surface moisture and energy budgets in CLIMATE DYNAMICS
  • 1998-08. Atmospheric Moisture Residence Times and Cycling: Implications for Rainfall Rates and Climate Change in CLIMATIC CHANGE
  • 1995-08. The impact of climate change on the river rhine: A scenario study in CLIMATIC CHANGE
  • 1995-12. Regional climate changes as simulated in time-slice experiments in CLIMATIC CHANGE
  • 1999-06. Precipitation in Italy from 1833 to 1996 in THEORETICAL AND APPLIED CLIMATOLOGY
  • 1993-12. Implications of climate change due to the enhanced greenhouse effect on floods and droughts in Australia in CLIMATIC CHANGE
  • 1999-03. Europe's winter prospects in NATURE
  • 1991-05. Simulations of the effect of a warmer climate on atmospheric humidity in NATURE
  • 1994-09. The winterstorm “Vivian” of 27 February 1990: About the meteorological development, wind forces and damage situation in the forests of Switzerland in THEORETICAL AND APPLIED CLIMATOLOGY
  • 1994-12. Trends in the annual extreme rainfall events of 1 to 3 days duration over India in THEORETICAL AND APPLIED CLIMATOLOGY
  • 1995-05. Potential impacts of global warming on the frequency and magnitude of heavy precipitation in NATURAL HAZARDS
  • 1999-05. Conceptual Framework for Changes of Extremes of the Hydrological Cycle with Climate Change in CLIMATIC CHANGE
  • 1995-09. Trends in high-frequency climate variability in the twentieth century in NATURE
  • 2000-04. Covariation of the Mid-Tropospheric Flow and the Sea Surface Temperature of the North Atlantic: A Statistical Analysis in THEORETICAL AND APPLIED CLIMATOLOGY
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1023/a:1018983226334

    DOI

    http://dx.doi.org/10.1023/a:1018983226334

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1005898354


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Earth Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0401", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Atmospheric Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0406", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Geography and Environmental Geoscience", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Climate Research, ETH, Winterthurerstrasse 190, CH-8057, Z\u00fcrich, Switzerland", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Climate Research, ETH, Winterthurerstrasse 190, CH-8057, Z\u00fcrich, Switzerland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Frei", 
            "givenName": "Christoph", 
            "id": "sg:person.016646760605.09", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016646760605.09"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Atmospheric Science, ETH, Z\u00fcrich, Switzerland", 
              "id": "http://www.grid.ac/institutes/grid.5801.c", 
              "name": [
                "Atmospheric Science, ETH, Z\u00fcrich, Switzerland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Davies", 
            "givenName": "Huw C.", 
            "id": "sg:person.0657436457.55", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0657436457.55"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Climate Research, ETH, Winterthurerstrasse 190, CH-8057, Z\u00fcrich, Switzerland", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Climate Research, ETH, Winterthurerstrasse 190, CH-8057, Z\u00fcrich, Switzerland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Gurtz", 
            "givenName": "Joachim", 
            "id": "sg:person.012171607175.99", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012171607175.99"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Climate Research, ETH, Winterthurerstrasse 190, CH-8057, Z\u00fcrich, Switzerland", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Climate Research, ETH, Winterthurerstrasse 190, CH-8057, Z\u00fcrich, Switzerland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Sch\u00e4r", 
            "givenName": "Christoph", 
            "id": "sg:person.0635043627.22", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0635043627.22"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s007040050089", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011217628", 
              "https://doi.org/10.1007/s007040050089"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00613411", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003584254", 
              "https://doi.org/10.1007/bf00613411"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01093854", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019622240", 
              "https://doi.org/10.1007/bf01093854"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00865533", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012265562", 
              "https://doi.org/10.1007/bf00865533"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1005319109110", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027068882", 
              "https://doi.org/10.1023/a:1005319109110"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/351382a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007515383", 
              "https://doi.org/10.1038/351382a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s007040070044", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008172338", 
              "https://doi.org/10.1007/s007040070044"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/18560", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049583222", 
              "https://doi.org/10.1038/18560"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00867053", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041724649", 
              "https://doi.org/10.1007/bf00867053"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s003820050165", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039182560", 
              "https://doi.org/10.1007/s003820050165"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s003820050189", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023218126", 
              "https://doi.org/10.1007/s003820050189"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01098378", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007993517", 
              "https://doi.org/10.1007/bf01098378"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/377217a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048375413", 
              "https://doi.org/10.1038/377217a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1005488920935", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044362125", 
              "https://doi.org/10.1023/a:1005488920935"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00198617", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020911415", 
              "https://doi.org/10.1007/bf00198617"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01095150", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028066326", 
              "https://doi.org/10.1007/bf01095150"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2000-10", 
        "datePublishedReg": "2000-10-01", 
        "description": "Past changes and possible future variations in the nature of extreme precipitation and flood events in Central Europe and the Alpine region are examined from a physical standpoint. An overview is given of the following key contributory physical processes: (1) the variability of the large-scale atmospheric flow and the associated changes of the North-Atlantic storm track; (2) the feedback process between climate warming and the water cycle, and in particular the potential for more frequent heavy precipitation events; and (3) the catchment-scale hydrological processes associated with variations in major river flooding events and that are related to land-use changes, river training measures, and shifts in the proportion of rain to snowfall. In this context an account is provided of the possible future forecasting and warning methodologies based upon high-resolution weather prediction and runoff models. Also consideration is given to the detectability of past (future) changes in observed (modeled) extreme events. It is shown that their rarity and natural fluctuation largely impedes a detection of systematic variations. These effects restrict trend analysis of such events to return periods of below a few months. An illustration using daily precipitation from the Swiss Alps does yield evidence for pronounced trends of intense precipitation events (return period 30 days), while trends of stronger event classes are not detectable (but nevertheless can not be excluded). The small detection probability for extreme events limits possible mitigation of future damage costs through an abatement of climate change alone, and points to the desirability of developing improved early forecasting/warning systems as an additional no-regret strategy.", 
        "genre": "article", 
        "id": "sg:pub.10.1023/a:1018983226334", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1147689", 
            "issn": [
              "1389-5176", 
              "1573-1545"
            ], 
            "name": "Integrated Assessment", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "4", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "1"
          }
        ], 
        "keywords": [
          "extreme precipitation", 
          "precipitation events", 
          "past changes", 
          "flood events", 
          "extreme events", 
          "catchment-scale hydrological processes", 
          "North Atlantic storm track", 
          "frequent heavy precipitation events", 
          "large-scale atmospheric flow", 
          "heavy precipitation events", 
          "river flooding events", 
          "intense precipitation events", 
          "proportion of rain", 
          "observed extreme events", 
          "river training measures", 
          "possible future variations", 
          "Central Europe", 
          "small detection probability", 
          "land use change", 
          "storm track", 
          "climate dynamics", 
          "hydrological processes", 
          "daily precipitation", 
          "runoff model", 
          "water cycle", 
          "flooding events", 
          "weather prediction", 
          "atmospheric flow", 
          "Swiss Alps", 
          "future variations", 
          "climate warming", 
          "forecasting/", 
          "alpine regions", 
          "climate change", 
          "physical processes", 
          "feedback processes", 
          "precipitation", 
          "future forecasting", 
          "natural fluctuations", 
          "trend analysis", 
          "regret strategy", 
          "such events", 
          "systematic variation", 
          "pronounced trend", 
          "events", 
          "physical standpoint", 
          "possible mitigation", 
          "damage costs", 
          "variation", 
          "snowfall", 
          "warming", 
          "rain", 
          "Alps", 
          "trends", 
          "variability", 
          "forecasting", 
          "Europe", 
          "changes", 
          "event classes", 
          "track", 
          "training measures", 
          "fluctuations", 
          "region", 
          "mitigation", 
          "flow", 
          "process", 
          "cycle", 
          "period", 
          "dynamics", 
          "prediction", 
          "shift", 
          "model", 
          "evidence", 
          "detectability", 
          "nature", 
          "proportion", 
          "analysis", 
          "potential", 
          "account", 
          "abatement", 
          "system", 
          "methodology", 
          "rarity", 
          "consideration", 
          "probability", 
          "overview", 
          "months", 
          "context", 
          "effect", 
          "standpoint", 
          "measures", 
          "illustration", 
          "detection", 
          "class", 
          "strategies", 
          "detection probability", 
          "cost", 
          "desirability"
        ], 
        "name": "Climate dynamics and extreme precipitation and flood events in Central Europe", 
        "pagination": "281-300", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1005898354"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1023/a:1018983226334"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1023/a:1018983226334", 
          "https://app.dimensions.ai/details/publication/pub.1005898354"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-10-01T06:30", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/article/article_316.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1023/a:1018983226334"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1023/a:1018983226334'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1023/a:1018983226334'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1023/a:1018983226334'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1023/a:1018983226334'


     

    This table displays all metadata directly associated to this object as RDF triples.

    247 TRIPLES      21 PREDICATES      140 URIs      115 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1023/a:1018983226334 schema:about anzsrc-for:04
    2 anzsrc-for:0401
    3 anzsrc-for:0406
    4 schema:author Necba85eb8a4f4df780523833c874c2d6
    5 schema:citation sg:pub.10.1007/bf00198617
    6 sg:pub.10.1007/bf00613411
    7 sg:pub.10.1007/bf00865533
    8 sg:pub.10.1007/bf00867053
    9 sg:pub.10.1007/bf01093854
    10 sg:pub.10.1007/bf01095150
    11 sg:pub.10.1007/bf01098378
    12 sg:pub.10.1007/s003820050165
    13 sg:pub.10.1007/s003820050189
    14 sg:pub.10.1007/s007040050089
    15 sg:pub.10.1007/s007040070044
    16 sg:pub.10.1023/a:1005319109110
    17 sg:pub.10.1023/a:1005488920935
    18 sg:pub.10.1038/18560
    19 sg:pub.10.1038/351382a0
    20 sg:pub.10.1038/377217a0
    21 schema:datePublished 2000-10
    22 schema:datePublishedReg 2000-10-01
    23 schema:description Past changes and possible future variations in the nature of extreme precipitation and flood events in Central Europe and the Alpine region are examined from a physical standpoint. An overview is given of the following key contributory physical processes: (1) the variability of the large-scale atmospheric flow and the associated changes of the North-Atlantic storm track; (2) the feedback process between climate warming and the water cycle, and in particular the potential for more frequent heavy precipitation events; and (3) the catchment-scale hydrological processes associated with variations in major river flooding events and that are related to land-use changes, river training measures, and shifts in the proportion of rain to snowfall. In this context an account is provided of the possible future forecasting and warning methodologies based upon high-resolution weather prediction and runoff models. Also consideration is given to the detectability of past (future) changes in observed (modeled) extreme events. It is shown that their rarity and natural fluctuation largely impedes a detection of systematic variations. These effects restrict trend analysis of such events to return periods of below a few months. An illustration using daily precipitation from the Swiss Alps does yield evidence for pronounced trends of intense precipitation events (return period 30 days), while trends of stronger event classes are not detectable (but nevertheless can not be excluded). The small detection probability for extreme events limits possible mitigation of future damage costs through an abatement of climate change alone, and points to the desirability of developing improved early forecasting/warning systems as an additional no-regret strategy.
    24 schema:genre article
    25 schema:isAccessibleForFree false
    26 schema:isPartOf N09541cff1f31417d9470702e5ced9354
    27 Na7a0f07f2d1d42da8712a58a51b34bfb
    28 sg:journal.1147689
    29 schema:keywords Alps
    30 Central Europe
    31 Europe
    32 North Atlantic storm track
    33 Swiss Alps
    34 abatement
    35 account
    36 alpine regions
    37 analysis
    38 atmospheric flow
    39 catchment-scale hydrological processes
    40 changes
    41 class
    42 climate change
    43 climate dynamics
    44 climate warming
    45 consideration
    46 context
    47 cost
    48 cycle
    49 daily precipitation
    50 damage costs
    51 desirability
    52 detectability
    53 detection
    54 detection probability
    55 dynamics
    56 effect
    57 event classes
    58 events
    59 evidence
    60 extreme events
    61 extreme precipitation
    62 feedback processes
    63 flood events
    64 flooding events
    65 flow
    66 fluctuations
    67 forecasting
    68 forecasting/
    69 frequent heavy precipitation events
    70 future forecasting
    71 future variations
    72 heavy precipitation events
    73 hydrological processes
    74 illustration
    75 intense precipitation events
    76 land use change
    77 large-scale atmospheric flow
    78 measures
    79 methodology
    80 mitigation
    81 model
    82 months
    83 natural fluctuations
    84 nature
    85 observed extreme events
    86 overview
    87 past changes
    88 period
    89 physical processes
    90 physical standpoint
    91 possible future variations
    92 possible mitigation
    93 potential
    94 precipitation
    95 precipitation events
    96 prediction
    97 probability
    98 process
    99 pronounced trend
    100 proportion
    101 proportion of rain
    102 rain
    103 rarity
    104 region
    105 regret strategy
    106 river flooding events
    107 river training measures
    108 runoff model
    109 shift
    110 small detection probability
    111 snowfall
    112 standpoint
    113 storm track
    114 strategies
    115 such events
    116 system
    117 systematic variation
    118 track
    119 training measures
    120 trend analysis
    121 trends
    122 variability
    123 variation
    124 warming
    125 water cycle
    126 weather prediction
    127 schema:name Climate dynamics and extreme precipitation and flood events in Central Europe
    128 schema:pagination 281-300
    129 schema:productId N8320bb59367646429457bdce5a90a611
    130 Ne8f0d10c313841a58fb2f1e6a25e2a08
    131 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005898354
    132 https://doi.org/10.1023/a:1018983226334
    133 schema:sdDatePublished 2022-10-01T06:30
    134 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    135 schema:sdPublisher N4711e89b8825457db2d4eed698fb0429
    136 schema:url https://doi.org/10.1023/a:1018983226334
    137 sgo:license sg:explorer/license/
    138 sgo:sdDataset articles
    139 rdf:type schema:ScholarlyArticle
    140 N09541cff1f31417d9470702e5ced9354 schema:volumeNumber 1
    141 rdf:type schema:PublicationVolume
    142 N220b1e2ae1084eafa90ee95e5a701c00 rdf:first sg:person.012171607175.99
    143 rdf:rest N95d909503ff741148956fe32c940572f
    144 N4711e89b8825457db2d4eed698fb0429 schema:name Springer Nature - SN SciGraph project
    145 rdf:type schema:Organization
    146 N643d712c261e4ed08132ae654492ae55 rdf:first sg:person.0657436457.55
    147 rdf:rest N220b1e2ae1084eafa90ee95e5a701c00
    148 N8320bb59367646429457bdce5a90a611 schema:name doi
    149 schema:value 10.1023/a:1018983226334
    150 rdf:type schema:PropertyValue
    151 N95d909503ff741148956fe32c940572f rdf:first sg:person.0635043627.22
    152 rdf:rest rdf:nil
    153 Na7a0f07f2d1d42da8712a58a51b34bfb schema:issueNumber 4
    154 rdf:type schema:PublicationIssue
    155 Ne8f0d10c313841a58fb2f1e6a25e2a08 schema:name dimensions_id
    156 schema:value pub.1005898354
    157 rdf:type schema:PropertyValue
    158 Necba85eb8a4f4df780523833c874c2d6 rdf:first sg:person.016646760605.09
    159 rdf:rest N643d712c261e4ed08132ae654492ae55
    160 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
    161 schema:name Earth Sciences
    162 rdf:type schema:DefinedTerm
    163 anzsrc-for:0401 schema:inDefinedTermSet anzsrc-for:
    164 schema:name Atmospheric Sciences
    165 rdf:type schema:DefinedTerm
    166 anzsrc-for:0406 schema:inDefinedTermSet anzsrc-for:
    167 schema:name Physical Geography and Environmental Geoscience
    168 rdf:type schema:DefinedTerm
    169 sg:journal.1147689 schema:issn 1389-5176
    170 1573-1545
    171 schema:name Integrated Assessment
    172 schema:publisher Springer Nature
    173 rdf:type schema:Periodical
    174 sg:person.012171607175.99 schema:affiliation grid-institutes:None
    175 schema:familyName Gurtz
    176 schema:givenName Joachim
    177 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012171607175.99
    178 rdf:type schema:Person
    179 sg:person.016646760605.09 schema:affiliation grid-institutes:None
    180 schema:familyName Frei
    181 schema:givenName Christoph
    182 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016646760605.09
    183 rdf:type schema:Person
    184 sg:person.0635043627.22 schema:affiliation grid-institutes:None
    185 schema:familyName Schär
    186 schema:givenName Christoph
    187 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0635043627.22
    188 rdf:type schema:Person
    189 sg:person.0657436457.55 schema:affiliation grid-institutes:grid.5801.c
    190 schema:familyName Davies
    191 schema:givenName Huw C.
    192 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0657436457.55
    193 rdf:type schema:Person
    194 sg:pub.10.1007/bf00198617 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020911415
    195 https://doi.org/10.1007/bf00198617
    196 rdf:type schema:CreativeWork
    197 sg:pub.10.1007/bf00613411 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003584254
    198 https://doi.org/10.1007/bf00613411
    199 rdf:type schema:CreativeWork
    200 sg:pub.10.1007/bf00865533 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012265562
    201 https://doi.org/10.1007/bf00865533
    202 rdf:type schema:CreativeWork
    203 sg:pub.10.1007/bf00867053 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041724649
    204 https://doi.org/10.1007/bf00867053
    205 rdf:type schema:CreativeWork
    206 sg:pub.10.1007/bf01093854 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019622240
    207 https://doi.org/10.1007/bf01093854
    208 rdf:type schema:CreativeWork
    209 sg:pub.10.1007/bf01095150 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028066326
    210 https://doi.org/10.1007/bf01095150
    211 rdf:type schema:CreativeWork
    212 sg:pub.10.1007/bf01098378 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007993517
    213 https://doi.org/10.1007/bf01098378
    214 rdf:type schema:CreativeWork
    215 sg:pub.10.1007/s003820050165 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039182560
    216 https://doi.org/10.1007/s003820050165
    217 rdf:type schema:CreativeWork
    218 sg:pub.10.1007/s003820050189 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023218126
    219 https://doi.org/10.1007/s003820050189
    220 rdf:type schema:CreativeWork
    221 sg:pub.10.1007/s007040050089 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011217628
    222 https://doi.org/10.1007/s007040050089
    223 rdf:type schema:CreativeWork
    224 sg:pub.10.1007/s007040070044 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008172338
    225 https://doi.org/10.1007/s007040070044
    226 rdf:type schema:CreativeWork
    227 sg:pub.10.1023/a:1005319109110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027068882
    228 https://doi.org/10.1023/a:1005319109110
    229 rdf:type schema:CreativeWork
    230 sg:pub.10.1023/a:1005488920935 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044362125
    231 https://doi.org/10.1023/a:1005488920935
    232 rdf:type schema:CreativeWork
    233 sg:pub.10.1038/18560 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049583222
    234 https://doi.org/10.1038/18560
    235 rdf:type schema:CreativeWork
    236 sg:pub.10.1038/351382a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007515383
    237 https://doi.org/10.1038/351382a0
    238 rdf:type schema:CreativeWork
    239 sg:pub.10.1038/377217a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048375413
    240 https://doi.org/10.1038/377217a0
    241 rdf:type schema:CreativeWork
    242 grid-institutes:None schema:alternateName Climate Research, ETH, Winterthurerstrasse 190, CH-8057, Zürich, Switzerland
    243 schema:name Climate Research, ETH, Winterthurerstrasse 190, CH-8057, Zürich, Switzerland
    244 rdf:type schema:Organization
    245 grid-institutes:grid.5801.c schema:alternateName Atmospheric Science, ETH, Zürich, Switzerland
    246 schema:name Atmospheric Science, ETH, Zürich, Switzerland
    247 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...