A Drug Dissolution Monitor Employing Multiple Fiber Optic Probes and a UV/Visible Diode Array Spectrophotometer View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1994-07

AUTHORS

Chi-Shi Chen, Chris W. Brown

ABSTRACT

A traditional dissolution pumping system was recently replaced with a fiber optic interface between the spectrometer and the samples. However, the system was limited to a single sample vessel. In this study, a dissolution testing system with six vessels connected to a diode array spectrometer via six optical fibers was investigated. A bifurcated fiber optic bundle was used to transfer the light from the source to the dissolution vessels and was networked so that spectra of each sample can be measured periodically. A full spectrum calibration method based on Principal Component Regression (PCR) was used to determine the concentrations of active ingredients and to account for interferences due to excipients in tablet formulations. Results on this new fiber optic interface system are compared with those obtained previously with the traditional pumping system. Standard errors of prediction are between 1.5 and 3.2% using cross-validation and between 1.1 and 1.7% for the direct validation of two active ingredients in two different drug formulations. More... »

PAGES

979-983

Identifiers

URI

http://scigraph.springernature.com/pub.10.1023/a:1018975002025

DOI

http://dx.doi.org/10.1023/a:1018975002025

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1008368655

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/7937558


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1115", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pharmacology and Pharmaceutical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Calibration", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Chemistry, Pharmaceutical", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Fiber Optic Technology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Chemical", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Optical Fibers", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Pharmaceutical Preparations", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Spectrophotometry, Ultraviolet", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Chemistry, University of Rhode Island, RI 02881, Kingston", 
          "id": "http://www.grid.ac/institutes/grid.20431.34", 
          "name": [
            "Department of Chemistry, University of Rhode Island, RI 02881, Kingston"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chen", 
        "givenName": "Chi-Shi", 
        "id": "sg:person.011107504021.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011107504021.22"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Chemistry, University of Rhode Island, RI 02881, Kingston", 
          "id": "http://www.grid.ac/institutes/grid.20431.34", 
          "name": [
            "Department of Chemistry, University of Rhode Island, RI 02881, Kingston"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Brown", 
        "givenName": "Chris W.", 
        "id": "sg:person.013664016253.14", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013664016253.14"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "1994-07", 
    "datePublishedReg": "1994-07-01", 
    "description": "A traditional dissolution pumping system was recently replaced with a fiber optic interface between the spectrometer and the samples. However, the system was limited to a single sample vessel. In this study, a dissolution testing system with six vessels connected to a diode array spectrometer via six optical fibers was investigated. A bifurcated fiber optic bundle was used to transfer the light from the source to the dissolution vessels and was networked so that spectra of each sample can be measured periodically. A full spectrum calibration method based on Principal Component Regression (PCR) was used to determine the concentrations of active ingredients and to account for interferences due to excipients in tablet formulations. Results on this new fiber optic interface system are compared with those obtained previously with the traditional pumping system. Standard errors of prediction are between 1.5 and 3.2% using cross-validation and between 1.1 and 1.7% for the direct validation of two active ingredients in two different drug formulations.", 
    "genre": "article", 
    "id": "sg:pub.10.1023/a:1018975002025", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1094644", 
        "issn": [
          "0724-8741", 
          "1573-904X"
        ], 
        "name": "Pharmaceutical Research", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "7", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "11"
      }
    ], 
    "keywords": [
      "full spectrum calibration methods", 
      "diode array spectrophotometer", 
      "diode array spectrometer", 
      "different drug formulations", 
      "drug formulations", 
      "array spectrophotometer", 
      "active ingredients", 
      "fiber optic interface", 
      "dissolution vessel", 
      "tablet formulation", 
      "principal component regression", 
      "array spectrometer", 
      "sample vessel", 
      "spectrometer", 
      "fiber optic probe", 
      "excipients", 
      "fiber optic bundle", 
      "optic probe", 
      "spectrophotometer", 
      "component regression", 
      "spectra", 
      "optic interface", 
      "samples", 
      "ingredients", 
      "formulation", 
      "probe", 
      "pumping system", 
      "concentration", 
      "interface", 
      "calibration method", 
      "light", 
      "system", 
      "method", 
      "optical fiber", 
      "interference", 
      "fibers", 
      "source", 
      "interface system", 
      "results", 
      "standard error", 
      "study", 
      "direct validation", 
      "validation", 
      "testing system", 
      "prediction", 
      "bundles", 
      "vessels", 
      "error", 
      "regression", 
      "traditional dissolution pumping system", 
      "dissolution pumping system", 
      "single sample vessel", 
      "dissolution testing system", 
      "optic bundle", 
      "spectrum calibration method", 
      "new fiber optic interface system", 
      "fiber optic interface system", 
      "optic interface system", 
      "traditional pumping system", 
      "Drug Dissolution Monitor Employing Multiple Fiber Optic Probes", 
      "Dissolution Monitor Employing Multiple Fiber Optic Probes", 
      "Monitor Employing Multiple Fiber Optic Probes", 
      "Employing Multiple Fiber Optic Probes", 
      "Multiple Fiber Optic Probes", 
      "UV/Visible Diode Array Spectrophotometer", 
      "Visible Diode Array Spectrophotometer"
    ], 
    "name": "A Drug Dissolution Monitor Employing Multiple Fiber Optic Probes and a UV/Visible Diode Array Spectrophotometer", 
    "pagination": "979-983", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1008368655"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1023/a:1018975002025"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "7937558"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1023/a:1018975002025", 
      "https://app.dimensions.ai/details/publication/pub.1008368655"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T18:06", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_253.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1023/a:1018975002025"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1023/a:1018975002025'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1023/a:1018975002025'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1023/a:1018975002025'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1023/a:1018975002025'


 

This table displays all metadata directly associated to this object as RDF triples.

163 TRIPLES      21 PREDICATES      100 URIs      92 LITERALS      14 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1023/a:1018975002025 schema:about N28bd22a304074b7f99244004f1620a90
2 N47b9341cd268466d95a0dcbb0f954d6b
3 N693a012560664501b0af1849fd351e15
4 N89e67aa3f73547c48b5ce5faf5fd3bc6
5 Nbebd74d1473841939129b21ba8989180
6 Ne2aefab597884274a2d814f3c1f53e1f
7 Ne9fc2d2a2e8149f7b39f158da8f04fd7
8 anzsrc-for:11
9 anzsrc-for:1115
10 schema:author Ne0ca97631dc24158890b6ed5847739ec
11 schema:datePublished 1994-07
12 schema:datePublishedReg 1994-07-01
13 schema:description A traditional dissolution pumping system was recently replaced with a fiber optic interface between the spectrometer and the samples. However, the system was limited to a single sample vessel. In this study, a dissolution testing system with six vessels connected to a diode array spectrometer via six optical fibers was investigated. A bifurcated fiber optic bundle was used to transfer the light from the source to the dissolution vessels and was networked so that spectra of each sample can be measured periodically. A full spectrum calibration method based on Principal Component Regression (PCR) was used to determine the concentrations of active ingredients and to account for interferences due to excipients in tablet formulations. Results on this new fiber optic interface system are compared with those obtained previously with the traditional pumping system. Standard errors of prediction are between 1.5 and 3.2% using cross-validation and between 1.1 and 1.7% for the direct validation of two active ingredients in two different drug formulations.
14 schema:genre article
15 schema:inLanguage en
16 schema:isAccessibleForFree false
17 schema:isPartOf Naf2ee75190724f07af79b5225ea94cd7
18 Nb9bf1dc016c448b68761f4cfb54f879d
19 sg:journal.1094644
20 schema:keywords Dissolution Monitor Employing Multiple Fiber Optic Probes
21 Drug Dissolution Monitor Employing Multiple Fiber Optic Probes
22 Employing Multiple Fiber Optic Probes
23 Monitor Employing Multiple Fiber Optic Probes
24 Multiple Fiber Optic Probes
25 UV/Visible Diode Array Spectrophotometer
26 Visible Diode Array Spectrophotometer
27 active ingredients
28 array spectrometer
29 array spectrophotometer
30 bundles
31 calibration method
32 component regression
33 concentration
34 different drug formulations
35 diode array spectrometer
36 diode array spectrophotometer
37 direct validation
38 dissolution pumping system
39 dissolution testing system
40 dissolution vessel
41 drug formulations
42 error
43 excipients
44 fiber optic bundle
45 fiber optic interface
46 fiber optic interface system
47 fiber optic probe
48 fibers
49 formulation
50 full spectrum calibration methods
51 ingredients
52 interface
53 interface system
54 interference
55 light
56 method
57 new fiber optic interface system
58 optic bundle
59 optic interface
60 optic interface system
61 optic probe
62 optical fiber
63 prediction
64 principal component regression
65 probe
66 pumping system
67 regression
68 results
69 sample vessel
70 samples
71 single sample vessel
72 source
73 spectra
74 spectrometer
75 spectrophotometer
76 spectrum calibration method
77 standard error
78 study
79 system
80 tablet formulation
81 testing system
82 traditional dissolution pumping system
83 traditional pumping system
84 validation
85 vessels
86 schema:name A Drug Dissolution Monitor Employing Multiple Fiber Optic Probes and a UV/Visible Diode Array Spectrophotometer
87 schema:pagination 979-983
88 schema:productId N142b42d9b3af4d9ba82e0b8b982c501c
89 N3b887d901b7c46e5b15984eb0ac6b548
90 N9fd72ea78cbd4e8fbd0c7ffc9de441ed
91 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008368655
92 https://doi.org/10.1023/a:1018975002025
93 schema:sdDatePublished 2022-01-01T18:06
94 schema:sdLicense https://scigraph.springernature.com/explorer/license/
95 schema:sdPublisher N159cb29b0d2043a0835db32880de0c34
96 schema:url https://doi.org/10.1023/a:1018975002025
97 sgo:license sg:explorer/license/
98 sgo:sdDataset articles
99 rdf:type schema:ScholarlyArticle
100 N142b42d9b3af4d9ba82e0b8b982c501c schema:name dimensions_id
101 schema:value pub.1008368655
102 rdf:type schema:PropertyValue
103 N159cb29b0d2043a0835db32880de0c34 schema:name Springer Nature - SN SciGraph project
104 rdf:type schema:Organization
105 N28bd22a304074b7f99244004f1620a90 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
106 schema:name Pharmaceutical Preparations
107 rdf:type schema:DefinedTerm
108 N3b887d901b7c46e5b15984eb0ac6b548 schema:name pubmed_id
109 schema:value 7937558
110 rdf:type schema:PropertyValue
111 N47b9341cd268466d95a0dcbb0f954d6b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
112 schema:name Models, Chemical
113 rdf:type schema:DefinedTerm
114 N693a012560664501b0af1849fd351e15 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
115 schema:name Chemistry, Pharmaceutical
116 rdf:type schema:DefinedTerm
117 N89e67aa3f73547c48b5ce5faf5fd3bc6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
118 schema:name Fiber Optic Technology
119 rdf:type schema:DefinedTerm
120 N9fd72ea78cbd4e8fbd0c7ffc9de441ed schema:name doi
121 schema:value 10.1023/a:1018975002025
122 rdf:type schema:PropertyValue
123 Naf2ee75190724f07af79b5225ea94cd7 schema:issueNumber 7
124 rdf:type schema:PublicationIssue
125 Nb9bf1dc016c448b68761f4cfb54f879d schema:volumeNumber 11
126 rdf:type schema:PublicationVolume
127 Nbebd74d1473841939129b21ba8989180 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
128 schema:name Spectrophotometry, Ultraviolet
129 rdf:type schema:DefinedTerm
130 Ne0ca97631dc24158890b6ed5847739ec rdf:first sg:person.011107504021.22
131 rdf:rest Nffd8c8e02413417bb00e4b93cafebfd7
132 Ne2aefab597884274a2d814f3c1f53e1f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
133 schema:name Optical Fibers
134 rdf:type schema:DefinedTerm
135 Ne9fc2d2a2e8149f7b39f158da8f04fd7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
136 schema:name Calibration
137 rdf:type schema:DefinedTerm
138 Nffd8c8e02413417bb00e4b93cafebfd7 rdf:first sg:person.013664016253.14
139 rdf:rest rdf:nil
140 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
141 schema:name Medical and Health Sciences
142 rdf:type schema:DefinedTerm
143 anzsrc-for:1115 schema:inDefinedTermSet anzsrc-for:
144 schema:name Pharmacology and Pharmaceutical Sciences
145 rdf:type schema:DefinedTerm
146 sg:journal.1094644 schema:issn 0724-8741
147 1573-904X
148 schema:name Pharmaceutical Research
149 schema:publisher Springer Nature
150 rdf:type schema:Periodical
151 sg:person.011107504021.22 schema:affiliation grid-institutes:grid.20431.34
152 schema:familyName Chen
153 schema:givenName Chi-Shi
154 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011107504021.22
155 rdf:type schema:Person
156 sg:person.013664016253.14 schema:affiliation grid-institutes:grid.20431.34
157 schema:familyName Brown
158 schema:givenName Chris W.
159 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013664016253.14
160 rdf:type schema:Person
161 grid-institutes:grid.20431.34 schema:alternateName Department of Chemistry, University of Rhode Island, RI 02881, Kingston
162 schema:name Department of Chemistry, University of Rhode Island, RI 02881, Kingston
163 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...