The Relationship Between the Glass Transition Temperature and the Water Content of Amorphous Pharmaceutical Solids View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1994-04

AUTHORS

Bruno C. Hancock, George Zografi

ABSTRACT

The glass transition temperature of an amorphous pharmaceutical solid is a critical physical property which can dramatically influence its chemical stability, physical stability, and viscoelastic properties. Water frequently acts as a potent plasticizer for such materials, and since many amorphous solids spontaneously absorb water from their surroundings the relationship between the glass transition temperature and the water content of these materials is important. For a wide range of amorphous and partially amorphous pharmaceutical solids, it was found that there is a rapid initial reduction in the glass transition temperature from the dry state as water is absorbed, followed by a gradual leveling off of the response at higher water contents. This plasticization effect could generally be described using a simplified form of the Gordon-Taylor/Kelley-Bueche relationships derived from polymer free volume theory. Most of the systems considered showed a nearly ideal volume additivity and negligible tendency to interact. This is consistent with the hypothesis that such mixtures behave as concentrated polymer solutions and indicates that water acts as a plasticizer in a way similar to that of other small molecules and not through any specific or stoichiometric interaction process(es). More... »

PAGES

471-477

Identifiers

URI

http://scigraph.springernature.com/pub.10.1023/a:1018941810744

DOI

http://dx.doi.org/10.1023/a:1018941810744

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1042354045

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/8058600


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0303", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Macromolecular and Materials Chemistry", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Chemistry, Pharmaceutical", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Excipients", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Glass", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Theoretical", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Pharmaceutical Preparations", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Plasticizers", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Povidone", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Temperature", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Thermodynamics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Water", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Wisconsin\u2013Madison", 
          "id": "https://www.grid.ac/institutes/grid.14003.36", 
          "name": [
            "University of Wisconsin-Madison, 53706, Madison, Wisconsin"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hancock", 
        "givenName": "Bruno C.", 
        "id": "sg:person.0636134005.91", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0636134005.91"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Wisconsin\u2013Madison", 
          "id": "https://www.grid.ac/institutes/grid.14003.36", 
          "name": [
            "University of Wisconsin-Madison, 53706, Madison, Wisconsin"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zografi", 
        "givenName": "George", 
        "id": "sg:person.0100561403.96", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0100561403.96"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1248/cpb.37.1047", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004623812"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/macp.1988.021890911", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006165257"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0378-5173(84)90111-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006169415"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0378-5173(84)90111-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006169415"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0032-3861(85)90114-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006220339"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0032-3861(85)90114-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006220339"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0032-3861(92)90692-p", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007038236"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0032-3861(92)90692-p", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007038236"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00255296", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013558558", 
          "https://doi.org/10.1007/bf00255296"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00255296", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013558558", 
          "https://doi.org/10.1007/bf00255296"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/pol.1961.1205015421", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017045307"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jctb.5010020901", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017717471"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jctb.5010020901", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017717471"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1246/bcsj.41.2591", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023060779"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0032-3861(89)90371-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023572109"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0032-3861(89)90371-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023572109"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4757-9661-2_9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024608034", 
          "https://doi.org/10.1007/978-1-4757-9661-2_9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0032-3861(89)90172-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026161289"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0032-3861(89)90172-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026161289"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1018901325842", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030825994", 
          "https://doi.org/10.1023/a:1018901325842"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0032-3861(79)90128-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034384965"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0032-3861(79)90128-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034384965"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0032-3861(92)91103-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041984338"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0032-3861(92)91103-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041984338"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/app.1979.070230717", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045828758"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ma00171a055", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056181391"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ma60061a021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056201159"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1699711", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057770155"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1733201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057799588"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1994-04", 
    "datePublishedReg": "1994-04-01", 
    "description": "The glass transition temperature of an amorphous pharmaceutical solid is a critical physical property which can dramatically influence its chemical stability, physical stability, and viscoelastic properties. Water frequently acts as a potent plasticizer for such materials, and since many amorphous solids spontaneously absorb water from their surroundings the relationship between the glass transition temperature and the water content of these materials is important. For a wide range of amorphous and partially amorphous pharmaceutical solids, it was found that there is a rapid initial reduction in the glass transition temperature from the dry state as water is absorbed, followed by a gradual leveling off of the response at higher water contents. This plasticization effect could generally be described using a simplified form of the Gordon-Taylor/Kelley-Bueche relationships derived from polymer free volume theory. Most of the systems considered showed a nearly ideal volume additivity and negligible tendency to interact. This is consistent with the hypothesis that such mixtures behave as concentrated polymer solutions and indicates that water acts as a plasticizer in a way similar to that of other small molecules and not through any specific or stoichiometric interaction process(es).", 
    "genre": "research_article", 
    "id": "sg:pub.10.1023/a:1018941810744", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1094644", 
        "issn": [
          "0724-8741", 
          "1573-904X"
        ], 
        "name": "Pharmaceutical Research", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "11"
      }
    ], 
    "name": "The Relationship Between the Glass Transition Temperature and the Water Content of Amorphous Pharmaceutical Solids", 
    "pagination": "471-477", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "c9c0438c16b254ba0bd9f67935fc75c8f1365d69295180fdf6fee4f406e05254"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "8058600"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "8406521"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1023/a:1018941810744"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1042354045"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1023/a:1018941810744", 
      "https://app.dimensions.ai/details/publication/pub.1042354045"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T14:59", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8663_00000507.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1023%2FA%3A1018941810744"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1023/a:1018941810744'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1023/a:1018941810744'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1023/a:1018941810744'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1023/a:1018941810744'


 

This table displays all metadata directly associated to this object as RDF triples.

179 TRIPLES      21 PREDICATES      59 URIs      31 LITERALS      19 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1023/a:1018941810744 schema:about N10e7dda346124bbab659ebe46185594c
2 N2a36f2ceac424b7eb895fb83077339dc
3 N743fcbf158de4708a47211e2e3efa72a
4 N990eef05d8e74a67b62f3f44df5ea6e0
5 Na0797033b27e448894890c84b2cb5a40
6 Nb3199b8df5274c8e98bf5e6fee180ea4
7 Nc4b0c0f7a1ed4bfa8778b990e057a6a6
8 Nc899336e4b184065b73ce7d7778c4096
9 Ncfba943d2e194d028fdcfca1b91dbaa3
10 Ne16190b793ee4c7f928bb7d5f9258720
11 anzsrc-for:03
12 anzsrc-for:0303
13 schema:author Nbe8caec97eaf45b2aad43175e402f855
14 schema:citation sg:pub.10.1007/978-1-4757-9661-2_9
15 sg:pub.10.1007/bf00255296
16 sg:pub.10.1023/a:1018901325842
17 https://doi.org/10.1002/app.1979.070230717
18 https://doi.org/10.1002/jctb.5010020901
19 https://doi.org/10.1002/macp.1988.021890911
20 https://doi.org/10.1002/pol.1961.1205015421
21 https://doi.org/10.1016/0032-3861(79)90128-9
22 https://doi.org/10.1016/0032-3861(85)90114-4
23 https://doi.org/10.1016/0032-3861(89)90172-9
24 https://doi.org/10.1016/0032-3861(89)90371-6
25 https://doi.org/10.1016/0032-3861(92)90692-p
26 https://doi.org/10.1016/0032-3861(92)91103-9
27 https://doi.org/10.1016/0378-5173(84)90111-x
28 https://doi.org/10.1021/ma00171a055
29 https://doi.org/10.1021/ma60061a021
30 https://doi.org/10.1063/1.1699711
31 https://doi.org/10.1063/1.1733201
32 https://doi.org/10.1246/bcsj.41.2591
33 https://doi.org/10.1248/cpb.37.1047
34 schema:datePublished 1994-04
35 schema:datePublishedReg 1994-04-01
36 schema:description The glass transition temperature of an amorphous pharmaceutical solid is a critical physical property which can dramatically influence its chemical stability, physical stability, and viscoelastic properties. Water frequently acts as a potent plasticizer for such materials, and since many amorphous solids spontaneously absorb water from their surroundings the relationship between the glass transition temperature and the water content of these materials is important. For a wide range of amorphous and partially amorphous pharmaceutical solids, it was found that there is a rapid initial reduction in the glass transition temperature from the dry state as water is absorbed, followed by a gradual leveling off of the response at higher water contents. This plasticization effect could generally be described using a simplified form of the Gordon-Taylor/Kelley-Bueche relationships derived from polymer free volume theory. Most of the systems considered showed a nearly ideal volume additivity and negligible tendency to interact. This is consistent with the hypothesis that such mixtures behave as concentrated polymer solutions and indicates that water acts as a plasticizer in a way similar to that of other small molecules and not through any specific or stoichiometric interaction process(es).
37 schema:genre research_article
38 schema:inLanguage en
39 schema:isAccessibleForFree false
40 schema:isPartOf N401a50c9d6004a849656d309cdd205cc
41 N9d5ad629450f460d8da9968529d426c8
42 sg:journal.1094644
43 schema:name The Relationship Between the Glass Transition Temperature and the Water Content of Amorphous Pharmaceutical Solids
44 schema:pagination 471-477
45 schema:productId N15c677fd21d04f68bde172c238ca0ff0
46 N3e6472d832d342e7bc770deafa5f3dab
47 N63ef62a7a2b5404c9cef45237fc6564a
48 Nc127d7a403b14eb9bb15c1e4586d2932
49 Nec6e28dbec854d20b18274882a04ed05
50 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042354045
51 https://doi.org/10.1023/a:1018941810744
52 schema:sdDatePublished 2019-04-10T14:59
53 schema:sdLicense https://scigraph.springernature.com/explorer/license/
54 schema:sdPublisher Nab71b710b6984892aada54bb438ce486
55 schema:url http://link.springer.com/10.1023%2FA%3A1018941810744
56 sgo:license sg:explorer/license/
57 sgo:sdDataset articles
58 rdf:type schema:ScholarlyArticle
59 N10e7dda346124bbab659ebe46185594c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
60 schema:name Plasticizers
61 rdf:type schema:DefinedTerm
62 N15c677fd21d04f68bde172c238ca0ff0 schema:name dimensions_id
63 schema:value pub.1042354045
64 rdf:type schema:PropertyValue
65 N2a36f2ceac424b7eb895fb83077339dc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
66 schema:name Thermodynamics
67 rdf:type schema:DefinedTerm
68 N34f4a69f612b47b6addd2aaa90196c99 rdf:first sg:person.0100561403.96
69 rdf:rest rdf:nil
70 N3e6472d832d342e7bc770deafa5f3dab schema:name pubmed_id
71 schema:value 8058600
72 rdf:type schema:PropertyValue
73 N401a50c9d6004a849656d309cdd205cc schema:volumeNumber 11
74 rdf:type schema:PublicationVolume
75 N63ef62a7a2b5404c9cef45237fc6564a schema:name nlm_unique_id
76 schema:value 8406521
77 rdf:type schema:PropertyValue
78 N743fcbf158de4708a47211e2e3efa72a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
79 schema:name Chemistry, Pharmaceutical
80 rdf:type schema:DefinedTerm
81 N990eef05d8e74a67b62f3f44df5ea6e0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
82 schema:name Excipients
83 rdf:type schema:DefinedTerm
84 N9d5ad629450f460d8da9968529d426c8 schema:issueNumber 4
85 rdf:type schema:PublicationIssue
86 Na0797033b27e448894890c84b2cb5a40 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
87 schema:name Temperature
88 rdf:type schema:DefinedTerm
89 Nab71b710b6984892aada54bb438ce486 schema:name Springer Nature - SN SciGraph project
90 rdf:type schema:Organization
91 Nb3199b8df5274c8e98bf5e6fee180ea4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
92 schema:name Povidone
93 rdf:type schema:DefinedTerm
94 Nbe8caec97eaf45b2aad43175e402f855 rdf:first sg:person.0636134005.91
95 rdf:rest N34f4a69f612b47b6addd2aaa90196c99
96 Nc127d7a403b14eb9bb15c1e4586d2932 schema:name readcube_id
97 schema:value c9c0438c16b254ba0bd9f67935fc75c8f1365d69295180fdf6fee4f406e05254
98 rdf:type schema:PropertyValue
99 Nc4b0c0f7a1ed4bfa8778b990e057a6a6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
100 schema:name Glass
101 rdf:type schema:DefinedTerm
102 Nc899336e4b184065b73ce7d7778c4096 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
103 schema:name Water
104 rdf:type schema:DefinedTerm
105 Ncfba943d2e194d028fdcfca1b91dbaa3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
106 schema:name Models, Theoretical
107 rdf:type schema:DefinedTerm
108 Ne16190b793ee4c7f928bb7d5f9258720 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
109 schema:name Pharmaceutical Preparations
110 rdf:type schema:DefinedTerm
111 Nec6e28dbec854d20b18274882a04ed05 schema:name doi
112 schema:value 10.1023/a:1018941810744
113 rdf:type schema:PropertyValue
114 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
115 schema:name Chemical Sciences
116 rdf:type schema:DefinedTerm
117 anzsrc-for:0303 schema:inDefinedTermSet anzsrc-for:
118 schema:name Macromolecular and Materials Chemistry
119 rdf:type schema:DefinedTerm
120 sg:journal.1094644 schema:issn 0724-8741
121 1573-904X
122 schema:name Pharmaceutical Research
123 rdf:type schema:Periodical
124 sg:person.0100561403.96 schema:affiliation https://www.grid.ac/institutes/grid.14003.36
125 schema:familyName Zografi
126 schema:givenName George
127 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0100561403.96
128 rdf:type schema:Person
129 sg:person.0636134005.91 schema:affiliation https://www.grid.ac/institutes/grid.14003.36
130 schema:familyName Hancock
131 schema:givenName Bruno C.
132 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0636134005.91
133 rdf:type schema:Person
134 sg:pub.10.1007/978-1-4757-9661-2_9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024608034
135 https://doi.org/10.1007/978-1-4757-9661-2_9
136 rdf:type schema:CreativeWork
137 sg:pub.10.1007/bf00255296 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013558558
138 https://doi.org/10.1007/bf00255296
139 rdf:type schema:CreativeWork
140 sg:pub.10.1023/a:1018901325842 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030825994
141 https://doi.org/10.1023/a:1018901325842
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1002/app.1979.070230717 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045828758
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1002/jctb.5010020901 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017717471
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1002/macp.1988.021890911 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006165257
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1002/pol.1961.1205015421 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017045307
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1016/0032-3861(79)90128-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034384965
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1016/0032-3861(85)90114-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006220339
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1016/0032-3861(89)90172-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026161289
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1016/0032-3861(89)90371-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023572109
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1016/0032-3861(92)90692-p schema:sameAs https://app.dimensions.ai/details/publication/pub.1007038236
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1016/0032-3861(92)91103-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041984338
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1016/0378-5173(84)90111-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1006169415
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1021/ma00171a055 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056181391
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1021/ma60061a021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056201159
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1063/1.1699711 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057770155
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1063/1.1733201 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057799588
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1246/bcsj.41.2591 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023060779
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1248/cpb.37.1047 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004623812
176 rdf:type schema:CreativeWork
177 https://www.grid.ac/institutes/grid.14003.36 schema:alternateName University of Wisconsin–Madison
178 schema:name University of Wisconsin-Madison, 53706, Madison, Wisconsin
179 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...